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Abstract

The field of quantum technologies has been going through significant development
during the past few decades. Quantum computation and quantum communications,
specifically, are capable of providing solutions for problems that are either impossible
or computationally expensive with purely classical methods. Significant theoretical
achievements have been already presented in the form of quantum algorithms, which
can solve given problems in a fraction of the time made possible by current technology.
However, these new opportunities will also be available to those who wish to exploit
them for despicable purposes, such as breaking widely used public-key cryptosystems,
rendering them unsecure.
The good news is that the practical realization of these algorithms is still in its infancy,
giving us time to be prepared for a post-quantum era. Quantum key distribution
(QKD) protocols have been invented to facilitate eavesdropper detection in provably
secure private-key cryptography systems, utilizing the fact that any measurement
conducted on a quantum bit alters its state. The first chapter of this thesis introduces
some important concepts of quantum cryptography: symmetric key systems, discrete
variable quantum key distribution, and quantum random number generation (QRNG).
The physical realization of QKD protocols is always an imperfect approximation of
the ideal devices and the communication medium; namely, transmitters, receivers
and the channel. We need to turn our attention to the problems introduced by
such imperfections, which potentially offer loopholes for eavesdropping. Additionally,
alternative implementations of protocols can be of particular interest, if they provide
improvements over previous designs. Chapter 2 proposes a new transmitter setup
for the forefather of all QKD, BB84. It exploits the fact that vertical cavity
surface-emitting lasers (VCSELs) can be modulated in polarization between two
orthogonal states, effectively reducing the number of necessary light sources in the
transmitter. Different aspects of realization are given in detail, also including how to
avert an attack specifically targeting this design.
The generation of truly random, indeterministic number sequences is also necessary
for QKD systems. The fundamentally probabilistic nature of quantum measurements
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offer a wide range of options for random number generation. Amongst these, different
optical phenomena are popular choices for a variety of reasons. These include the
relative simplicity of light generation, the potential use of highly developed equipment
originally designed for optical communication networks, etc. The second half of this
thesis describes two optical quantum random number generators, which are based
on the difference of time intervals between successive photon detections. Chapter 3
introduces the mathematical model of an already existing, robust scheme, which
produces bits from an inherently uniform distribution. Two important figures of
merit are the focal point of the discussion, the bit generation efficiency and the bit
generation rate. Chapter 4 details an improvement of the previous method in terms of
its efficiency, complemented with an error analysis assuming non-ideal circumstances.
The claims of improvement are verified experimentally, also proving that the quality
of randomness can be upheld under the changes made to the original method.
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1.1 Introduction

To provide motivation for my research discussed in the following chapters, I shall
begin with introducing the theoretical background of three important aspects of
quantum cryptography. The first of these is the field of symmetric key cryptography,
with special attention towards the one-time pad scheme. The need of introducing
the two other topics follows naturally: both of them are invaluable for the practical
realization of provably secure cryptosystems.
The second, quantum key distribution (QKD), is the study of protocols utilizing
quantum phenomena to distribute encryption keys between parties, which allow
for the detection of any eavesdropping. An unauthorized person obtaining another
perfect copy of the exact encryption method is the greatest menace of all for those
who want to communicate in secrecy. After a brief general overview, discrete variable
QKD is introduced through a selection of well-known protocols, such as BB84, B92
or E91.
The last of the three is the topic of random number generation—a field with many
different applications. However, cryptography is arguably the most important among
those possibilities; good quality generators of uniformly distributed and independent
bits are an absolute necessity for key generation in symmetric key cryptography, but
also for the proper operation of QKD transmitters and receivers. State-of-the-art
solutions of optical quantum random number generators (QRNGs) are then presented,
which, as opposed to algorithmic generators, are suitable for the most demanding
situations as well.

1.2 Symmetric Key Cryptography

In cryptography, one party (commonly referred to as “Alice”) wants to send a
message M ∈M to another (“Bob”). She encrypts the original message with a
secret key K ∈ K to obtain the ciphertext E ∈ E . M, E and K are the message,
ciphertext and key spaces, respectively. Bob then uses another key to decipher E and
obtain—hopefully—the original message. The ultimate goal is to deny eavesdroppers
or cryptanalysts (“Eve”) from accessing the message.
There are two main approaches regarding the nature of keys. The first is the group of
symmetric key methods, where Alice and Bob have a pre-shared secret: two identical
keys—or two, which are easy to transform into each other—for encryption and
decryption. This relies on a prior key distribution phase, which is problematic in
real-life scenarios, and the adversaries could be hoping for capturing the key in secret.
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The second group overcomes this concern: in public-key or asymmetric cryptography
each party has their own secret key, but also its pair, a public key, which may be
known by anyone who is interested. The secret and public keys are connected through
a one-way function: a function that is difficult to invert. In such schemes, Alice
encrypts the message with the public key of the intended recipient, Bob, who then
uses his private key for decryption. Although no key distribution is necessary, some
of these algorithms rely on computational complexity, rather than provable security.
Nowadays, public-key cryptography and hybrid solutions wherein symmetric keys are
distributed while encrypted with a public-private key pair, are widely adopted. One
such example is the RSA algorithm [15], which is based on the complexity of integer
factorization of large prime numbers. It has been shown that Shor’s algorithm [16]—a
quantum algorithm—is theoretically capable of solving this problem significantly
faster than any classical known method. At this moment, however, the largest integer
which has been factorized using the algorithm is 21 [17] back in 2012. Similar
quantum computing solutions may exist for other computational problems, which
could eventually render wide-spread schemes unsecure. Even if present-day technology
is still a long way off from breaking public-key systems, it is wise to conduct research
into both public-key algorithms resistant against quantum attacks (post-quantum
cryptography) and the possibility of utilizing suitable symmetric key protocols shared
with secure key distribution.
An information-theoretically secure option is the symmetric key protocol called the
one-time pad (OTP) or Vernam cipher, originally invented in 1882 by Frank Miller
[18] and later independently patented by Gilbert Vernam [19]. In OTP, every “letter”
of the message is paired with a randomly chosen key letter from the same alphabet.
The key is a shared secret between Alice and Bob; its length should exceed that of
the message, and it should not be reused. The ciphertext is obtained by the modulo
n addition of M and K, where n is the number of letters in the alphabet. On Bob’s
side, modular subtraction of the same key from the ciphertext yields the original
message. If the alphabet is the set of binary digits { 0, 1 } with cardinality two, the
modular addition is the same as the bitwise XOR operation ⊕ defined as

u⊕ v =

0, if u = v,

1, if u 6= v,
(1.1)

where u, v ∈ { 0, 1 }. Also, since modulo 2 addition and subtraction are essentially
the same, the bitwise XOR of E and K can be used for decrypting the message.
Figure 1.1 shows an example of the process.
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M 0 0 1 0 0 1 0 0 1 1 1 0 E 1 1 1 1 0 1 1 0 0 0 1 1
K ⊕ 1 1 0 1 0 0 1 0 1 1 0 1 K ⊕ 1 1 0 1 0 0 1 0 1 1 0 1
E 1 1 1 1 0 1 1 0 0 0 1 1 M 0 0 1 0 0 1 0 0 1 1 1 0

Figure 1.1: Encryption (left) and decryption (right) of message M and ciphertext E using key K
in a binary one-time pad scheme.

Claude E. Shannon showed in his work titled Communication Theory of Secrecy
Systems [20] that the one-time pad is indeed a cryptosystem providing what one
may call perfect secrecy. Perfect secrecy defines the notion that Eve should not
be able to gain information about the message M based on the ciphertext E.
Therefore, the a priori probabilities P (M) of messages—a property of the underlying
language—should be equal to their a posteriori probabilities conditioned on the
ciphertext, PE (M) = P

(
M | E

)
. Using Bayes’ theorem,

PE (M) =
P (M)PM (E)

P (E)
, (1.2)

where PM (E) = P
(
E |M

)
, it becomes obvious that perfect secrecy is only achieved

if P (E) = PM (E), meaning that the probability of getting ciphertext E should be
independent of the message to be encrypted. This comes with several consequences
and requirements regarding perfect cryptosystems. First, an endomorphic system
is needed—the number of possible messages should be equal to the number of
ciphertexts:

|M| = |E| , (1.3)

and only one key should transform every M into every possible E. Second, the
number of possible keys should be at least as many as that of the messages:

|K| ≥ |M| . (1.4)

|K| = |M| also means that each key should be equally likely—the keys should be
uniformly distributed! This is the reason why quantum random number generators,
discussed later, are designed to generate bits as close to an uniform distribution as
possible. An OTP scheme that utilizes such a generator fulfills the criteria of perfect
secrecy.
The average uncertainty (information content) or (Shannon) entropy H (X) of a
discrete random variable X is defined as [21]

H (X) = −
∑
x∈X

P (X = x) logP (X = x) , (1.5)
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where X and P are the sample space and the probability measure of the underlying
probability space (X ,S, P ). Since the entropy is bounded from above by the
max-entropy log |X |, it follows that the uncertainty of messages is at most log |M|.
This amount of information needs to be concealed by a key with at least as much
uncertainty, further proving the requirement of Eq. 1.4.
However, this produces a significant practical drawback: infinitely long messages
require infinitely long keys for perfect secrecy. Altogether, a key generating device
should be able to create the key at a rate matching the information generation rate of
the source. Moreover, keys should not be used more than once. Thus, key distribution
(sharing new keys between the two participants) becomes an important task, with
special care taken to avoid giving unauthorized parties the possibility of obtaining a
copy.

1.3 Discrete Variable Quantum Key Distribution

The task of secure key distribution between the authorized parties has been made
possible thanks to the research of the past 30 years. Quantum key distribution
protocols have been designed in order to tackle the seemingly insurmountable problem
of eavesdropper detection [22]. This field is arguably the best-developed aspect of
quantum communications and computing. Quantum computing utilizes quantum
bits (qubits) instead of regular bits, which can not only take on two discrete values,
but an arbitrary superposition of those two. QKD exploits the fundamental traits of
quantum physics, which allow one to statistically monitor whether someone tried to
gain information about the qubits—which inevitably changes the quantum system in
question.
Let me start with a short summary of notation and concepts relevant to quantum
information theory [23]. A quantum state can be described by a column vector in a
relevant Hilbert space over the field of complex numbers C. Such a vector is denoted
by a ket |ψ〉, where ψ is a label, not a direct representation of the vector elements.
Its conjugate transpose or Hermitian conjugate, a row vector, is a bra 〈ψ| = |ψ〉†.
The inner product (dot product) of two states |ψi〉, |ψj〉 is then written as 〈ψi|ψj〉.
States are normalized so that 〈ψ|ψ〉 = 1. As a consequence, any two basis states from
an orthonormal basis spanning the vector space obey the relationship 〈ψi|ψj〉 = δij,
where δij is the Kronecker delta

δij =

0, i 6= j;

1, i = j.
(1.6)
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As usual, a zero inner product implies orthogonality of the states. Measurement
of quantum states is, to the best of our knowledge, a totally probabilistic event.
During a projective measurement, measuring a state in a certain basis could yield
either of the basis vectors as a result, with probabilities depending on the overlap
between the measured and the basis states. The inner products are intrinsically linked
to measurement probabilities; the latter can be expressed as the squared absolute
value of some inner product. The result is only certainly “correct” if the state to be
measured is a basis vector of the measurement basis, as the overlap (inner product)
of different orthogonal basis vectors is zero.
Protocols where the underlying qubits dwell in a finite-dimensional (mostly 2D)
Hilbert space are usually called discrete-variable (DV-QKD) protocols, while those
in infinite-dimensional spaces are continuous-variable (CV-QKD) solutions [22]. In
this thesis, only the topic of DV-QKD is covered.
Qubits used by DV-QKD protocols are quantum states which can be described in
two-dimensional vector spaces, e.g. the polarization of a single photon. A general
qubit state is then given by

|ψ〉 = α |0〉+ β |1〉 , (1.7)

〈ψ| = α∗ 〈0|+ β∗ 〈1| (1.8)

in its ket and bra forms, with α, β ∈ C being the probability amplitudes and ∗

denoting complex conjugation. |0〉 , |1〉 are two orthogonal basis vectors. Normalization
constraints require |α|2 + |β|2 = 1. For the given example of polarization states,
|0〉 and |1〉 usually denote the rectilinear basis of horizontal and vertical linear
polarizations, respectively. Another basis, the diagonal, is given by the vectors
representing linear polarizations angled at ±45°,

|+〉 =
|0〉+ |1〉√

2
and (1.9)

|−〉 =
|0〉 − |1〉√

2
. (1.10)

The rectilinear and diagonal bases are mutually unbiased, meaning that measuring a
state lying along one of the basis states in the other basis yields a completely random
outcome with equal probabilities. As an example, measuring |1〉 in the diagonal
basis yields results |+〉 and |−〉 with probabilities

∣∣〈+|1〉∣∣2 =
∣∣〈−|1〉∣∣2 = 0.5 each.

Measurements also change the quantum state by collapsing the wave function into
the measured state.

9
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1.3.1 The Basic Idea Behind QKD

The underlying notion of QKD is eavesdropper detection. Rather than trying to
conceal and distribute keys so that no one is able to gain any information about
them—which would be a noble but futile attempt—, one should design protocols
that allow the detection of this information leakage, thus preventing the use of
compromised keys.
Quantum key distribution is made possible by the no cloning theorem [24], which
states that an arbitrary unknown quantum state cannot be copied. States known
beforehand, and those being pairwise orthogonal to each other can be reproduced
faithfully, since measurement in the corresponding eigenbasis always yields the input
state as a result. Therefore, every QKD protocol uses at least a pair of states which
are not orthogonal to each other; indeed, any two non-orthogonal states suffice for a
simple method, the B92 [25].
As a consequence of the theorem, Eve is not able to copy incoming qubits and store
them for further manipulation; any eavesdropping strategy works as a quantum
measurement, thus affecting and potentially altering the states in question. Even if
for the purposes of security analysis, Eve is supposed to be capable of everything not
explicitly forbidden by physics, this alteration will result in a mismatch between the
raw keys of Alice and Bob, quantified by the quantum bit error rate (QBER). The
two parties can compare a sufficiently long random substring of their raw keys on a
public channel. If the QBER exceeds a pre-defined limit—depending on the exact
strategy of Eve—, they would conclude that someone is listening and has gained
a significant amount of information, and the keys would be discarded, the process
aborted, and potentially started anew. Obviously, since the eavesdropping method
is unknown to anyone but Eve, one should expect the worst-case scenario of an
optimal strategy, and use the corresponding lowest acceptable QBER limit. Even if
it is impossible to eavesdrop on such a protocol unnoticed, key distribution between
Alice and Bob can be permanently blocked.

1.3.2 Problems of Practical Realization

Some DV-QKD protocols are theoretically using qubits implemented on single photons.
The quantum state of radiation describing one qubit is thus a pure Fock state |n = 1〉.
Fock states { | n〉 | n = 0, 1, 2, . . . } have a well-defined number (n) of photons, and
are thus eigenstates of the number operator N̂ = â†â with an eigenvalue n. Here, â†

and â are the creation and annihilation operators of the quantum harmonic oscillator,
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respectively.

N̂ |n〉 = n |n〉 (1.11)

Mathematically, Fock states are orthogonal to each other
(
〈m|n〉 = δmn

)
, and provide

a simple basis expansion for any state of radiation, but their realization is difficult.
True single-photon sources—albeit they exist—have not yet found their way into
commercial applications; therefore, practical implementations of QKD transmitters
require accessible substitutes, which are usually weak, highly attenuated laser pulses
[22].
Low-power laser light can be well approximated with a coherent state |α〉, where
the label α is an arbitrary complex number, conveniently written in its polar form
α = |α| · eiφ. A coherent state can be expressed in terms of Fock states as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (1.12)

Coherent states are eigenstates of the annihilation operator â with eigenvalue α,
leading to the identities

â |α〉 = α |α〉 (1.13)

and, since
(
â |α〉

)†
= 〈α| â†,

〈α| â† = 〈α|α∗. (1.14)

The mean number of photons 〈n〉 in a coherent state is

〈n〉 =
〈
α
∣∣∣ N̂ ∣∣∣α〉 =

〈
α
∣∣∣ â†â ∣∣∣α〉 = 〈α |α∗α |α〉 = |α|2 〈α |α〉 = |α|2 , (1.15)

whereas the probability of measuring exactly n photons in the coherent state is given
by

P (N = n) =
∣∣〈n |α〉∣∣2 = e−|α|

2 |α|2

n!
. (1.16)

Therefore, the average power of a coherent state is proportional to |α|2, but does
not depend on the phase φ. The above probability mass function is exactly that of a
Poisson distribution [26] with parameter λ = |α|2, which is equal to both its mean
and variance. A peculiar property of any Poisson distribution is that its support is
the set of non-negative integers, and no probability pn = P (N = n) is exactly zero,
regardless of the parameter.
Thus, if one would like to use a weak coherent source as a substitute for a true
single-photon source, there are two types of problems. The first is significantly more
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alarming: if the mean is large—only around λ = 1 is sufficient—, a significant portion
of pulses will contain multiple photons (Table 1.1). This gives Eve the opportunity to
perform a photon number splitting (PNS) attack, originally discussed in [27], or an
extended PNS [28] attack. In a BB84 setting, this roughly corresponds to blocking
single-photon pulses; storing one (or more) photons of multiphoton pulses, letting
the others pass through a lossless channel between Eve and Bob, and measuring the
polarization of stored photons only after the basis choices had been disclosed on the
public channel, gaining significant information about the key. Assuming a lossless
channel may seem strange, but there is nothing in theory prohibiting Eve to use
such a transmission medium. In case the original channel losses, without Eve and
her trickery, are higher than a certain limit, the PNS attack allows Eve to gain full
information about the key [27]. On top of that, an extended PNS attack would also
incorporate manipulation of the photon statistics to resemble a Poisson distribution,
as expected, which is otherwise modified by the eavesdropping.

Table 1.1: Probabilities of measuring N photons for different Poisson distribution parameters.

λ P (N = 0) P (N = 1) P (N = 2) P (N > 2)

0.1 0.90484 0.09048 0.00452 0.00016
1.0 0.36788 0.36788 0.18394 0.08030

The second problem does not have security issues, but can be an annoyance. For
smaller parameters, the probability of measuring a blank state with zero photons, p0,
increases. This greatly reduces the achievable key distribution rate. A general rule of
thumb is that λ ≈ 0.1 is a good trade-off between blank and multiphoton pulses (see
Table 1.1 for exact probabilities); even so, the key rate is decreased to less than 10%
of its original value, but only about 0.45% of pulses contain more than one photon.

1.3.3 Examples of DV-QKD Protocols

To provide a basis for further discussion, let us go through some of the most basic
and/or most widely used discrete variable QKD protocols.

BB84. Developed by the pioneers of quantum cryptography, Charles Bennett
and Gilles Brassard in 1984, what later became known as BB84 is the earliest
example of a quantum key distribution protocol [29]. It often serves as a starting
point when introducing QKD, since the main principle is easy to understand, and
provides a nice illustration of how the no-cloning theorem is exploited. BB84 uses
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four different quantum states. Each state is orthogonal to exactly one other state
from the set, forming a basis of a two-dimensional Hilbert space. The two bases are
conjugate; therefore, not all four states are pairwise orthogonal. One of the possible
implementations operates with the linear polarization of single photons; I will use this
formulation in all further discussion. However, the protocol could be implemented
with phase and frequency encoding as well [30].
The four possible linear polarization states are defined by their angles. Horizontal
(0°, →, |0〉) and vertical (90°, ↑, |1〉) polarizations make up the rectilinear basis (+),
while polarization angles of ±45°(↗/|+〉 and ↘/|−〉) constitute the diagonal basis
(×). Alice generates two independent, uniformly distributed random bit streams
{sA} and {mA}. sA is the key bit Alice wants to share with Bob. mA, on the other
hand, decides the basis in which the key bit is to be encoded. Each ordered pair
(sA, mA) corresponds to one of the four possible quantum states (see Table 1.2 for
the exact assignment) that is then sent to the receiver.

Table 1.2: Key bits, basis bits, and the corresponding quantum state sent by Alice in the BB84
protocol.

Key bit sA Basis bit mA Sent state

0 0 →
1 0 ↑
0 1 ↗
1 1 ↘

Bob, independently from Alice, also generates a random bit sequence {mB}, which
chooses the basis used for measurement to obtain bits sB. Assume now that the
channel used for transmission is noiseless and there is no eavesdropping. If mA = mB,
Bob measures the state in the basis it was encoded in, and he gets a correct result in
100% of such cases (sA = sB). However, measurement in the conjugate basis results in
a completely random, uniformly distributed result. Afterwards, both parties disclose
their basis choices on a classical channel, and keep only those bits, for which their
choices agreed. This process is called key sifting, its output being the raw key of
Alice and Bob, respectively.
Now, in a practical scenario, both channel imperfections and eavesdropping attempts
can and will alter the quantum states before it reaches the receiver, causing Bob’s
measurements in the correct basis to fail sometimes. This is, however, beneficial in
terms of secrecy: during the information reconciliation phase, the two parties can
compare a randomly selected subset of their raw keys, and calculate an estimation for
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the quantum bit error rate. Whenever the QBER is above a certain limit, Alice and
Bob can suspect that there is an eavesdropper trying to gain information, and abort
the key distribution process. Due to this, even if the adversary is unable to obtain a
copy of the secret keys, it is possible to permanently block encrypted communication
between the parties. The upper limits of QBER for which any DV-QKD protocol
with an underlying two-level system can operate safely, is 1/2−

√
1/8 ≈ 0.1464 for

optimal attacks on individual qubits [31–33], and 0.11 against stronger coherent
attacks [33].

B92. Arguably the most simple DV-QKD protocol is B92, described by Charles
Bennett in 1992, eight years after the original BB84 article. As mentioned earlier,
its simplicity lies in the fact that it only uses two, necessarily non-orthogonal states
[25]. Although the original paper does not specify anything about the two states
apart from their non-orthogonality—and proves that any pair of states fulfilling this
condition suffices—, I am going to introduce it based on a wide-spread method, which
utilizes linearly polarized single photon states |0〉 and |+〉 from mutually unbiased
bases.
Alice prepares |0〉 whenever she wants to send a key bit sA = 0, and |+〉 for a bit
sA = 1. Bob measures the received state randomly in either the rectilinear or diagonal
basis, depending on a bit mB, and interprets the results the same way as he would
in BB84: |0〉 and |+〉 as zeroes, |1〉 and |−〉 as ones. His measurement can yield a
zero, whatever the sent state and the measurement basis; however, if he got a one
as result, he knows definitely that he used the conjugate basis—the rectilinear for
|+〉 or the diagonal for |0〉—, and he knows the corresponding state/bit sent by
Alice. Therefore, his measurement basis bits mB (0 for rectilinear, 1 for diagonal) are
perfectly anticorrelated with Alice’s key bits sA whenever he measured |1〉 or |−〉.
Bob’s key bits sB are then obtained as sB = mB. This process is commonly referred
to as unambiguous state discrimination (USD) [22, 34].
Bob discloses the corresponding time slots to Alice on a public channel, and they
keep only the suitable bits for their key. Obviously, assuming perfectly random and
independent bits and measurement choices, this only yields a key bit 25% of the
time, the remaining three quarters are discarded. After they agreed on their raw
keys, the two parties once again sacrifice a random subset of bits to check for errors,
deciding to continue or abort the protocol based on the estimated QBER.

Decoy state. Decoy state protocols were invented with a very specific target in
mind: to make already existing protocols, especially BB84, less susceptible towards
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photon number splitting attacks, when a true single-photon source is unavailable.
The main idea, originating from a 2003 paper written by Won-Young Hwang [35],
is to replace a subset of signal states with different intensities, mostly multiphoton
states. These are decoys, and their main role is to check whether the losses for decoy
states are significantly smaller than for signal states. Polarizations of decoy pulses
are also randomized, so that they cannot be distinguished from multiphoton signal
pulses.
Losses for signal and decoy states can be calculated once Bob has received all states,
and Alice announced publicly, which of the qubits were decoys. The difference of
losses is a clear indicator of PNS attacks, when single photon pulses are blocked by
Eve. Although in theory, one would need infinitely many decoy states, realizations
with only finite values have been shown to be sufficiently secure [22].

SARG04. Another protocol designed to improve security against PNS attacks in
weak coherent state QKD is SARG04 (Scarani–Acín–Ribordy–Grisin 2004). In their
paper, the authors provided a general set of protocols, as well as a specific example,
which is a modification of BB84 [34]. On the quantum level, the two protocols agree:
Alice sends either |0〉, |1〉, |+〉 or |−〉, while Bob measures the qubit randomly in the
rectilinear or diagonal basis. However, the sifting process is radically different, as
it denies the comfort of basis disclosure from the PNS attacker. Instead of telling
Bob the basis of encoding, Alice announces a pair of non-orthogonal states among
the four possibilities, one of which is the state she sent. Now Bob can perform
an unambiguous state discrimination measurement—it is not a surprise, that even
the authors commented on the similarity between SARG04 and B92—, discarding
inconclusive results. Altogether, the raw key rate will be 0.25, as opposed to the 0.5
of BB84. If this is compensated by increasing the mean photon number from 0.1
to 0.2, the attenuation allowed for perfect secrecy is increased so that the distance
covered goes up from 50 to around 100 km.
For the attenuation region allowed for SARG04, the PNS attack does not yield
full information to Eve [22]; the best she can do is an IRUD (intercept-resend
with unambiguous discrimination) attack, where she blocks pulses with less than
three photons, conducts an USD measurement, and resends the resulting qubit to
Bob—however, this strategy only provides full information for when the attenuation
is greater than 25.6 dB. BB84 can be shown to lose security at around 13 dB. These
limits can be pushed further out if not only four, but six or more non-orthogonal
states are used [34]. Furthermore, it needs to be noted that SARG04 is perfectly
suitable for single-photon implementations as well, even if its main purpose becomes
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superfluous.

E91. Artur K. Ekert’s E91 [36] is the odd one out among the listed protocols, as it
is based on quantum entanglement. Alice and Bob share a pair of entangled photons
(or in the original: spin-1/2 particles), in a singlet state, so that if they use the same
basis for measuring their polarizations, the results would be perfectly anticorrelated,
assuming a perfect channel and no eavesdropper. Both parties choose randomly
between three measurement bases; they use qubits for which their measurements
agreed as key bits, and all others (after disclosing the basis choices) to check the
Clauser–Horne–Shimony–Holt (CHSH) inequality. The violation of the inequality
would mean that the entanglement was not broken—e.g. by a measurement performed
by Eve—, and the anticorrelated key qubits can be safely used for encryption and
decryption of data. The opposite, however, would tell Alice and Bob to refrain from
applying the key, as there is a possibility that someone with malicious intentions
tried to access their results.

1.4 Quantum Random Number Generation

Regardless of what the exact key distribution protocol is, the one-time pad technique
always requires truly random numbers for information-theoretical security. Here, and
from now on, “truly random” refers to numbers—mostly bits—drawn from a discrete
uniform distribution. A random variable Bi describing a uniformly distributed bit
is defined on the finite sample space Ω = { 0, 1 } and follows the probability mass
function (PMF)

P (Bi = b) =

0.5, b = 0;

0.5, b = 1.
(1.17)

Consequently, since all bits need to be pairwise independent to assure indeterminacy,
n-long bit sequences for any positive integer n are uniformly distributed on
Ωn = { 0, 1 }n. All protocols, including the transportation of sealed envelopes, need
the encryption key to be random; in addition, several DV-QKD protocols also need
additional, independent random sequences to decide the encryption and decryption
bases on the transmitter and receiver sides, respectively. Aside from uniformity,
the random number generators (RNGs) responsible for generating the key bits are
required to have a bit generation rate higher than the key transmission rate.
Most RNGs available on computers are able to provide excellent generation rates,
and their output sequences show excellent statistical properties, indicating a uniform
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distribution. However, since they are generated by an algorithm from a starting state
(a seed), their outcome is deterministic. For this reason, they are called pseudorandom
number generators (PRNGs). Anyone knowing the seed and the algorithm itself can
predict future values with absolute certainty. This, obviously, makes them unsuitable
for cryptographic applications. Another drawback is that all PRNGs have a predefined
maximum sequence length, after which their state returns back to the seed; thus,
they provide a periodic sequence of bits. This might be the least of one’s concerns,
since well-designed PRNGs may have very long periods, such as Mersenne Twisters
with an astronomical length of

(
219937−1

)
∼ 106001 [37]. The extinction of PRNGs

is unlikely even in the post-quantum era, as there exist a myriad of applications
which do not necessarily require indeterminacy, only an adequately high level of
pseudo-randomness. Such areas include, but are not restricted to, scrambling and
descrambling of bits in classical communications to disperse the energy evenly within
the allowed bandwidth and to avoid burst errors—a weakness of forward error
correction algorithms—, as well as Monte Carlo method simulations [38].
Generators that use physical processes to produce random sequences of numbers
instead of algorithms are generally called true (or hardware) RNGs. Within this
group, one would find devices exploiting the inherent randomness of measurements
of a quantum system, quantum random number generators (QRNGs). The
earliest implementations detected radioactive decay, specifically β radiation, using
Geiger–Müller tubes. In a slow-clock implementation [39], the number of detections
were counted between rising edges of a clock signal with frequency f � λ, where λ is
the average detection rate. On the other hand, fast clock methods such as in Ref. [40],
count the rising edges of a clock with frequency f � λ between successive detections.
In either case, counts, which are non-uniform random variables, are used to generate
random numbers after the necessary transformations to achieve a distribution close to
uniform, e.g. keeping only the parity bit. However, recent research almost exclusively
focuses on alternative methods (almost, but that is not to say there have been no
new radioactive QRNG architectures introduced since the ’70s [41]). This is due to
several factors: safety and health issues regarding the storing and management of
large amounts of radioactive materials, and practical considerations, since the bit
generaton rates are rather limited.
The most popular field of physics in terms of quantum random number generation is
indisputably quantum optics. Photonic solutions provide a wide variety of options
to harness the entropy of quantum phenomena. Photon sources do not get depleted
such as stacks of radioactive materials do, and there are no hazards or safety
concerns—unless one decides to look directly into a fiber transmitting high-intensity
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light, which is fairly easy to avoid.

1.4.1 Optical Quantum Random Number Generators

The extensive 2017 monography Quantum Random Number Generators [38] by
Miguel Herrero-Collantes and Juan Carlos García-Escartín discusses the different
types of optical QRNGs in great detail and also provide a classification as a starting
point. Time-of-arrival (ToA) generators, using the randomness of time elapsed
between photon detections, are discussed in detail in Chapter 3. In general, the
research described in both Chapter 3 and 4 deals with specific optical ToA QRNG
methods. Different generator principles are shortly outlined here to obtain a better
understanding of the multitude of possibilities provided by optics for good quality
random number generation. Note that this description is not exhaustive—other
principles of operation are e.g. vacuum fluctuations, the phase noise of lasers, Raman
scattering and optical parametric oscillators.

Branching path. Branching path generators use the spatial superposition of a
qubit to extract entropy. This type of QRNG is perfectly suitable for an introductory
case study, due to the simplistic basic idea it is built upon. Of course, this can be
made as complicated in a specific realization as one wishes. Imagine a photon hitting
a balanced beam splitter, which transmits or reflects it with equal probabilities. In a
“macroscopic” experiment with millions of photons, we would measure equal optical
power in the two branches; but a beam splitter cannot split a single photon. Now
place a single-photon detector (either a single-photon avalanche photodiode or a
photoelectron multiplier) in both paths. At most one device will signal the photon’s
arrival, and one can assign a bit based on which detector “clicked”. Branching the
path of light can also be done based on polarization, rather than intensity. Assume,
for example, a single photon prepared in the state

|+〉 =
|0〉+ |−〉√

2
. (1.18)

Passing it through a polarization beam splitter (PBS) with transmission and reflection
axes aligned parallel to the basis states |0〉 and |−〉, the two detectors will detect it
with probabilities

∣∣〈0|+〉∣∣2 =
∣∣〈1|+〉∣∣2 = 0.5 after losses have been taken into account.

Such experiments are described in [42–46]. The light source can be a true single
photon source [45, 46] or attenuated pulsed/continuous wave (CW) laser diodes or
LEDs [42].
Both of these architectures are highly sensitive towards device non-idealities and
detector differences. Real beam splitters always have splitting ratios slightly different
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from 0.5; the perfect alignment of a PBS is also impossible in practice. Along with
the different quantum efficiencies—probabilities of detecting a given photon—of the
two detectors, the resulting bit sequences will feature a non-zero bias, favoring either
zeroes or ones. The dead time of detectors, a short period during which they become
insensitive after a detection, on the other hand, may introduce correlations between
successive bits. If the arrival of a photon can be expected during the dead time, it
becomes less likely that subsequent bits are going to be equal. Different noise sources
(dark count rate, afterpulsing probability) also result in deviations from uniformity.
Several of these problems can be eliminated with a simple but clever idea: transform
the spatial superposition into temporal superposition, as in Ref. [43]. This can be
done by placing a delay line (essentially a short optical fiber section) in one of the
branches, then coupling them back together, and using one detector with well-defined
time windows. If the photon is detected in the earlier window with respect to a
reference trigger signal, assign a zero, if it is detected in the later window, assign a
one.
The bit generation rates of branching path generators are limited to several Mbps at
best [38, 42], often only reaching tens or hundreds of kbps [43, 45, 46]. The main
limitation factors include the repetition rates of pulsed lasers/LEDs, the low efficiency
of spontaneous parametric down-conversion used to create heralded single photons,
and the dead times or low quantum efficiencies of detectors. Even so, the basic
method can be analyzed without much difficulty, the origin of randomness is almost
self-explanatory—to no surprise, one of the commercial QRNGs, ID Quantique’s
Quantis [44] is a branching path generator. One promising alternative to increase
the rates is to create superpositions where the number of paths is a higher integer
power of 2 [47].

Photon counting. Photon counting (PC) generators, along with time-of-arrival
QRNGs, are heirs to earlier radioactivity-based setups, inheriting methods applied
to those. PC methods are reminiscent of the slow clock setups mentioned previously.
These generators employ single-photon detectors and assign bits based on the number
of photons/detections within a fixed time window. The general setup is simplistic:
a light source (semiconductor laser or LED) emits pulsed or CW light, which is
guided to the detector either in free space or through an optical fiber. The optical
intensity should be low enough so that the sensitive receivers do not get damaged.
Thus, attenuators are usually placed between the source and detector.
Most PC QRNGs use detectors of limited photon resolving capabilities; they generally
provide binary results: no output for no photons vs. a voltage pulse if at least one
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photon was detected. A popular approach is to count the number of detections within
fixed periods of time [48, 49], and assign the parity of the result as a random bit.
The dead time of detectors had even proven to be helpful, since it allows for finding
average power levels where the resulting bit stream is unbiased. This, however, would
be theoretically impossible for the parity-based method if the detectors were ideal
[48]. Another option is to use multiple least significant bits (LSBs) from the binary
representation of counts, e.g. four in Ref. [50], keeping in mind that this number, as
a necessary condition, should not exceed the min-entropy of the source.
More nuanced methods also have been tested to transform the underlying
exponential/Poisson distributions into a uniform one. As an example, the authors
of Ref. [51] took fixed-length time windows, keeping only those within which only
one detection was found. They assigned the binary form of the number of the time
bin within the window, where the detection occurred. By cutting off the edges of
each window, this resulted in a uniform distribution, yielding high-quality random
numbers. (One might argue that this is rather a time-of-arrival generator, but this is
a semantic question, which I do not want to get into, and I simply list this generator
within the PC group.) Another research group [52] examined the time bins within a
large time window, and encoded bits based on how many, and exactly which bins
contained a detection. It has also been shown that the dark counts of the detector
alone can be used for random number generation, although only at several tens of
kbps.
There exist more refined detectors, that are actually able to resolve the number
of photons arriving simultaneously (or at least well within the dead time). The
generators in Refs. [53] and [54] use a device that is able to discriminate between
photon numbers ranging from 0 to 7—the amplitude of its output voltage pulse
depends on the number, unlike in case of a “simple” single photon detector. The first
of these papers [53] described a system using weak laser pulses as the source of light,
comparing successive photon number readouts, and assigning a bit based on their
comparison. The second approach [54] is less robust, but more refined: measured
numbers were grouped into four bins, where the total probability of each bin is
around 25%, as uniformity would demand.
An interesting idea is to illuminate existing image sensors, e.g. the camera of a
cell phone, with an LED, then read out the binary representation of each pixel’s
voltage. The voltage is, under correct conditions, mainly dominated by the number
of detected photons. Using a suitable extractor to increase the entropy of the bit
stream, it provides a method for true random number generation with commercial
devices [55].
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The average bit generation rates exceed those of branching path generators: values in
the order of 1–100Mbps are common, while parallelization of several SPAD pixels can
help yield higher rates, e.g. 200Mbps in Ref. [50]. Another group treated separately
in Ref. [38] is that of attenuated pulse generators, but one might argue that these are
just a specific subcategory of PC QRNGs. Here, randomness is provided by answering
the basic yes–no question “Has there been a detection?”

Amplified spontaneous emission. Amplified spontaneous emission (ASE)
is a phenomenon during which spontaneously emitted photons are multiplied
through stimulated emission in an optical gain medium. Spontaneous emission
is a purely quantum process that cannot be explained by classical electrodynamics
[56]. A spontaneously emitted photon has random properties, such as
energy/frequency/wavelength—within the range allowed by the widths of relevant
energy bands—and polarization. When amplified, the effect produces rapidly
fluctuating, easy to measure optical intensity fluctuations, which can be sampled
to obtain random bits. ASE-based generators are a promising method of extremely
high-speed random number generation.
ASE noise can be obtained from different optical devices. It is the natural self-noise
of optical amplifiers, both erbium doped fiber amplifiers (EDFAs) and semiconductor
optical amplifiers (SOAs), and it is even more prominent when there is no input
signal to boost. Also, superluminescent light emitting diodes (SLEDs) are a type of
light source operating based on amplified spontaneous emission. The optical band of
ASE noise can cover hundreds of nanometers in the near infrared spectrum, with
full width at half maximum (FWHM) values easily reaching tens of nanometers,
corresponding to several THz in frequency [57]. Thus, the electrical bandwidth of
detected intensity fluctuations is only limited by the narrowest bandwidth element
in the light’s path—usually an electronic device, but a well-placed optical filter can
help if needed.
Generators in the literature use one or more of the aforementioned devices as ASE
sources: SLED [57–61], EDFA or other doped fiber amplifiers [56, 59, 62], and SOA
[59]. The bit acquisiton methods encorporate one-bit solutions, mostly employing
threshold comparison of samples [62]. In some cases, the inherently asymmetric
intensity distribution is symmetrized by differential detection: the signal is split in
two using either a polarization beam splitter [56] or a regular 50-50 beam splitter
[61], with a small delay introduced to one arm before detection. Since these pairs of
signals are assumed to be independent and identically distributed, their difference is
a symmetric variable, yielding higher quality random numbers. A particular solution
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offers a scalable parallelization method: splitting the signal to different disjoint
frequency bands, one can individually generate bit streams using each band, then
concatenate those for a higher total rate [58]. Once again, this can be done since
different spectrum components are independent from each other.
Multi-bit methods are also prevalent, and offer extraordinarily high generation rates.
Deliberately oversampling the intensity noise, and digitizing the measured samples at
16 [59] or 32 [60] bits is one way to go. These raw streams are heavily correlated, but
this can be eliminated by removing some of the most significant bits (MSBs). The
article in Ref. [57] offers both a single-bit and three multi-bit encoding options for
the same physical hardware: the noise is split into two, one path having a delay. Two
bit streams are generated for both arms, with the correlations and the possible bias
being decreased by taking their bitwise XOR, and the potential discarding of MSBs.
Our research group also conducted experiments regarding ASE QRNGs, mostly
focusing on the effect of sampling rate on the quality of randomness [2, 13]. The ASE
source was an SLED, an the intensity noise was further amplified using an EDFA.
To enhance the differences between sequences obtained by different sampling rates,
we introduced a small deliberate bias into the bit creation by slightly detuning the
comparison threshold.
The bit generation rates of ASE generators are generally higher than those of
previously mentioned methods. These values regularly reach 1–20Gbps [56–58, 61,
62], but can exceed several hundreds of Gbps (multibit methods in Refs. [57] and
[59]), or even reach 1.6Tbps [60]. Lately, a much needed detailed quantification
of randomness—neglected by most prior publications—was also conducted for
ASE-based QRNGs [63].

1.4.2 Randomness Testing

Given a bit sequence of finite length, it is impossible to certainly prove or disprove
whether or not its source was a generator producing uniformly distributed bits
[38]. However, if a device frequently outputs “suspicious” sequences, one might be
tempted to express doubt about its quality. One way to quantify the confidence in
the uniformity of a generator is statistical hypothesis testing.
During hypothesis testing, a so-called null hypothesis H0 and its alternative hypothesis
H1 are stated, the two being disjoint events. Then a relevant statistic S (a function
of the samples) is chosen, and the reference distribution is calculated for S under
the assumption that H0 is true. From the observed value of the statistic, a so called
p-value is computed, which is the probability of observing a test statistic as extreme
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as the one calculated, assuming that H0 is true. After that, a significance level α
is selected; this is the probability that H0 is rejected given that it was true (type
I error). Type II errors are, on the other hand, when H0 is wrongly accepted. The
two types of error cannot be minimized simultaneously. The null hypothesis is then
accepted if and only if the p-value is greater than α; otherwise, H0 is rejected/H1 is
accepted [64].
For randomness testing of RNGs, the null and alternative hypotheses are generally

H0 = {the bit sequence was produced by a RNG with uniform distribution} and

H1 = {the bit sequence was produced by a RNG with non-uniform distribution}.

In case of cryptographic applications, the significance level is often set to α = 0.01,
although this is no more than a de facto standard, and other values might be more
useful if type II errors need to be minimized [64].
However, no single statistic (or no finite number of different statistics) are enough to
completely quantify the randomness of a bit sequence. Therefore, testing of RNGs is
usually done using test suites, which contain multiple, more or less independent tests,
analyzing the randomness from different perspectives. Examples of such aspects are
the following: the bias, representing the difference of relative bit frequencies from 0.5;
periodic features, which can be observed with the help of discrete Fourier transform;
the autocorrelation coefficients, capable of implying dependencies between bits at
a certain distance; the number of runs—successive, uninterrupted subsequences of
identical bits—, showing how often the generator switches between zeros and ones
on average; etc. Obviously, a truly uniform RNG would have zero bias and zero
autocorrelation for lags other than zero. For each perspective, similar expectations
and corresponding reference distributions can be found based on the null hypothesis.
There exist several well-known suites designed for the randomness testing of RNGs,
such as the Statistical Test Suite of the US National Institute of Standards and
Technology (NIST STS) [65], TestU01 [66], the DieHard [67] and DieHarder [68]
batteries. Neither of these were designed with true RNGs in mind; therefore, a
high-quality PRNG is expected to pass all tests within these suites. For a QRNG,
passing is not a sufficient proof of randomness, but a necessary condition towards
accepting it as uniform.
During the research leading to this thesis, I exclusively worked with the NIST STS. It
consists of 15 different statistical tests, some of them having multiple subtests, from
which there are 188 altogether. The exact testing process I adopted is as follows:

1. The significance level is left at its default, α = 0.01.
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Table 1.3: Test parameters used in randomness testing throughout the thesis.

Test Block length Default

Block frequency 10001 128
Non-overlapping template 9 9
Overlapping template 9 9
Approximate entropy 10 10
Serial 16 16
Linear complexity 500 500

2. All statistical tests in the suite are conducted on Ls = 106 long subsequences
taken from a file, which contains at least 109 random bits. Each test is run
on Ns = 1000 distinct subsequences in total. Some tests require parameters,
these are selected based on input size recommendations. The parameters are
shown in Table 1.3. As it can be seen, only the block length M of the block
frequency test is changed from its default value of 128, to comply with the
recommendation (M > 0.01 · Ls).

3. After the testing has been finished, the software evaluates the obtained p-values
with respect to two different aspects. If either of them fails, the test result is
deemed a failure. A subsequence in itself passes a test if its calculated p-value
is greater than or equal to α.

• First aspect: passing proportion. The proportion of subsequences passing
a certain test should be within the interval

1− α± 3

√
α (1− α)

Ns
. (1.19)

For α = 0.01 and Ns = 1000, this means that at least 980 but no more
than 999 subsequences should pass. Note that since a perfect generator
produces any possible bit sequence of a certain length with the same
probability, it is expected that some of them do not “seem” random.

• Second aspect: uniformity of p-values. For a given test, the Ns distinct
p-values should be distributed uniformly between 0 and 1. To check this,
the test suite breaks the unit interval into ten disjoint bins of width 0.1,
counts the p-values found within each bin and conducts a uniformity
χ2-test on these numbers. If the newly calculated uniformity p-value
exceeds 0.0001, the hypothesis of uniformity is accepted.
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This process is repeated for the desired subset of the 188 tests—generally all of
them.

Raw bit streams output by QRNGs do not always pass all tests, either due to device
imperfections, or an inherent non-uniformity of the method. In such a case, it is
possible to increase the quality using post-processing methods called randomness
extractors [38], which are either deterministic algorithms or require a short, reusable
random seed. Randomness extraction usually results in shorter but more uniformly
distributed sequences, the amount of losses and the increase of quality depending
on the complexity of the algorithm. Although post-processing is an important and
well-researched subtopic of random number generation, it is only worth a short
mention in context of this dissertation. Personally, I am in favor of designing QRNGs
which do pass statistical tests without randomness extraction, as it will become clear
in Chapters 3 and 4. This is in opposition to several authors, who prefer generating
non-uniform data at higher rates, and then letting the algorithms do their job.
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2.1 Introduction

Vertical cavity surface-emitting lasers (VCSELs) are semiconductor laser diodes,
with a defining characteristic that light propagation is perpendicular to the active
region. This is in contrast with more conventional edge-emitting lasers (EELs),
like Fabry–Pérot, distributed Bragg reflector and distributed feedback lasers, where
emission is parallel to the active region. The main importance of VCSELs is that
they can be manufactured and tested on-wafer at large scales, allowing for reduced
production costs [69]. Since technological advances have already made it possible to
manufacture good quality, reliable VCSELs, they have been mass produced for use
in laser printing, optical mice, sensing, and plenty of other applications [70].
In this chapter, I show why VCSELs make good candidates for light sources in
weak coherent state DV-QKD implementations, describing their advantages and the
potential disadvantage of a unique feature called polarization switching. Based on
this, I then propose a new transmitter design for the BB84 protocol that exploits
controlled polarization switching of VCSELs, allowing to reduce the number of
elements in the device.

2.2 VCSEL Advantages in Low-Power Applications

DV-QKD protocols require very low power levels almost by definition—especially if
implemented using quasi-single photon states. Assuming a pulse repetition rate of
100MHz and a mean photon number of 0.1 per pulse at a wavelength of 850 nm, the
average optical power emitted by the transmitter is approximately 2.337 pW. Such
a transmitter is inevitably lossy, as practical pulses of off-the-shelf laser diodes are
several orders of magnitude stronger than this. Therefore, optical attenuators are
required to reduce the power level significantly. Inherently low-power solutions would
lead to lesser necessary attenuation, being more energy efficient and environmentally
friendly—although this is certainly not the application, where cutting the power
waste would resolve the problems of climate change.
VCSELs possess several beneficial properties regarding this matter, specifically when
compared to edge-emitting lasers. They typically come with lower threshold currents,
lower output powers and high power conversion efficiencies, offering decreased total
losses. Also, due to their symmetric cross-section, their emitted beams are circular,
unlike the elliptical profile typical of EELs. Additionally, the divergence angles of
beams are smaller, making it easier and more efficient to couple their light into
optical fibers, or collimate it for free-space applications [69]. It comes as no surprise
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that there have already been reports of QKD modules equipped with VCSELs [71].

2.3 Polarization Switching in VCSELs

Although the benefits of VCSELs are clear for low-power applications, there exists a
distinctive feature of surface-emitting lasers which can be a significant disadvantage.
This phenomenon is polarization switching (PS), whereas the state of polarization
of the emitted light can suddenly change (switch) between two orthogonal linear
polarizations. If the application is polarization-sensitive—which is the case for
single-photon qubit implementations of DV-QKD protocols—, a VCSEL with unstable
polarization is certainly not suitable for the task.
PS is not a universal property of VCSELs; even devices from the same wafer
can show differences. Nowadays, there are several methods to mass-produce
polarization-stabilized versions. The main driving force behind this field of research
was not the developent of QKD transmitters, but slightly more mundane devices,
such as optical mice. Plenty of options have been analyzed in detail, such as providing
external optical feedback for stabilization, using polarization-dependent mirrors or
asymmetric resonators, making the optical gain polarization-dependent, etc. However,
the one that eventually stood out and became widely accepted due to reliability is
stabilization achieved by applying shallow surface gratings [72].
With all due respect to those involved in investigating polarization stabilization, I
am not going to discuss those topics any further. For the purposes of this chapter,
it is significantly more important to understand the reasons behind polarization
switching, and discuss its consequences in DV-QKD protocols—both the drawbacks
and the proposed benefits, when PS happens in a controlled manner. The latter may
be called polarization modulation, and it will be explored in detail in Section 2.4.2.

2.3.1 Origins and Causes of PS in VCSELs

Polarization switching is unique to VCSELs, in the sense that it is not expected for
properly designed edge-emitting laser diodes. The circular symmetry of the device
alone would not be able to select preferred states of polarization. However, symmetry
is never perfect due to manufacturing imperfections and the crystallographic structure
of the materials. The directions of the crystallographic axes will eventually correspond
to two orthogonal states of polarization, called polarization eigenmodes, denoted as x̂-
and ŷ-polarized modes from now on. As every VCSEL exhibits anisotropies—different
properties in different directions—, the presence of linear phase anisotropy (γp), or
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birefringence, leads to a frequency split of 2γp between the eigenmodes, on the order
of several (tens) of GHz [73].
The PS mechanism can be roughly described as follows. When injection current is
increased above threshold, one of the eigenmodes becomes dominant with the other
being suppressed. Note that as per the convention in Ref. [73], it is useful to define
the injection current relative to threshold as

µ =
I

Ith
, (2.1)

where I is the injection current and Ith is the threshold current. If one increases µ
further, a sudden and abrupt switch can be experienced to the orthogonal eigenmode.
Decreasing the current again, a back-switch is to be expected to the originally
dominant mode. If a PS at increasing current occurs from the higher frequency mode
to the lower frequency one, it is called a Type I PS; the low-to-high frequency change
is a Type II PS. See Fig. 2.1 for a simple example.
A given VCSEL can have multiple switching points as well, e.g. a Type I switch
followed by a Type II or vice versa, but it can also lack the PS mechanism totally.
The first switch (closest to threshold) generally happens while only the fundamental
transverse mode is lasing; for switches at higher currents, multiple transverse modes
can be active simultaneously, generally leading to a decreased suppression ratio
between the two polarizations. Another distinctive feature is polarization switching
with hysteresis, also encountered in several devices. In such a case, the switching
point for increasing and decreasing current is not the same, showing a “memory effect”
included in the selection of polarization. Figure 2.2 illustrates a PS with hysteresis.
The polarization switching of VCSELs was studied in-depth during the ’90s, with
special emphasis placed on its origins. The earliest explanations by Choquette et al.
suggested that the dominant effect was thermally induced [74]. The two eigenmodes
are distinct in wavelength, and the material gain curve is frequency-dependent; thus,
x̂- and ŷ-polarized modes experience different gains. Around threshold, the one with
higher gain starts lasing, suppressing the orthogonal mode. However, increasing
the injection current heats the material and red-shifts the gain spectrum, so as the
relative gain of the eigenmodes is reversed, resulting in a polarization switch. This
reasoning explains Type I PS in gain-guided VCSELs, but not Type II [72], and also
fails to account for the potential hysteresis associated with switching.
San Miguel, Feng and Moloney created a significantly more difficult model (SFM
or spin-flip model), incorporating four magnetic sublevels [75] and their respective
population dynamics, extending the set of rate equations governing the operation
of semiconductor lasers. The parameters involved in the SFM model introduce fast,
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Figure 2.1: Example of PS in a polarization-resolved light-current characteristic. The x̂-polarized
eigenmode starts lasing as the current is increased beyond the threshold µ = 1, and retains its
polarization until the current reaches µ ≈ 1.25. Here, a polarization switch occurs, whereas the
x̂-polarized mode surrenders its stability conditions to the ŷ-polarized, but the total output power
still increases linearly. Taken from Ref. [14]; based on figures in Ref. [73].

short time-scale mechanisms to the explanation of polarization switches. These are
the decay rate of the electric field in the cavity and that of the total carrier number;
the spin-flip relaxation rate γs describing the mixing of carriers with opposite values
of angular momentum; the linewidth enhancement factor α; the frequency split
between the modes; etc.
The model’s validity was proven in the paper of Martín-Regalado et al. [73] via
an extended numerical mode stability analysis. The parameter set was slightly
redefined (but not changed in meaning) to include the phase anisotropy γp and the
amplitude anisotropy γa. Amplitude anisotropy is the product of both gain and
loss anisotropies—the latter is also known as dichroism. It has been found that
polarization switching is indeed explained if γp 6= 0 and α 6= 0, while γa is also given
a small but nonzero value. The switching type depends on the sign of the amplitude
anisotropy: γa < 0 corresponds to a Type II switch with increasing current, whereas
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Figure 2.2: Example of PS with hysteresis in a polarization-resolved light-current characteristic.
Once again, as current is increased above threshold, the x̂-polarized mode becomes stable. With
increasing current, switching to ŷ occurs around µ = 1.29; with decreasing current, x̂ becomes
dominant below µ = 1.19. It can be concluded that the region 1.19 < µ < 1.29 is bistable. Arrows
help determine the changes in current along different sections of the curves. Taken from Ref. [14];
based on figures in Ref. [73].

γa > 0 results in a Type I switch under the same conditions [76]. Type II switches are
not abrupt: there are intermediary elliptic and unpolarized states near the switching
point. Another notable result is the finding of large bistable regions of the parameter
space also involving µ, where in principle both eigenmodes are stable. This allows
for hysteresis cycles, since in these regions the already lasing state is retained, and a
switch is only expected after crossing into a region where only the orthogonal state
can be stable [77]. The SFM model’s predictions generally show great agreement
with experimental results.
As a sidenote, I need to mention that polarization switching is also strongly influenced
by external optical feedback into the laser cavity, depending on both the angle and
strength of the incoming light [78].
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2.3.2 Increased QBER Induced by Polarization Switching

For DV-QKD protocols implemented with single photon polarization qubits, the
unwanted switching of polarization to the orthogonal state will introduce errors
in the raw keys of the participants. If the rate of switches is high enough, the key
distribution will be aborted even in the absence of eavesdropping, due to high levels
of QBER. This effect is best illustrated on basic QKD protocols: let us look at BB84
and B92.

BB84 Example. In case of BB84, if the basis choices of Alice and Bob are
independent, then, on average, they agree 50% of the time. It is also safe to assume
that polarization switches happen independently from basis choices. Since a PS
happens between orthogonal states, it will certainly lead to a quantum bit error in
the raw key if the chosen bases are the same. These key bits can cause two types of
problems: a false alarm, if they are picked for the key sifting process, or a difference
in true keys, leading to incorrect decryption. However, those switches in qubits,
for which the choises differed, can be neglected, as these will not manifest in the
creation of a key bit. Table 2.1 shows a simple key distribution scenario depicting all
possible situations. Polarization switches and differing raw key bits are denoted by
red numbers. Qubit #2 features an ultimately harmless switch, whereas qubit #4
contains a key bit mismatch. Altogether, every second PS on average is responsible
for errors.

Table 2.1: Polarization switching effects in BB84. Taken from Ref. [11] and Ref. [14].

Qubit number 1 2 3 4 5 6

Intended state (sA, mA) ↑ ↗ ↗ → ↑ ↘
Sent state (s̃A, mA) ↑ ↘ ↗ ↑ ↑ ↘
Measurement basis mB + + × + × ×
Alice’s raw key sA 1 0 0 1
Bob’s raw key sB 1 0 1 1

Model the polarization switch as a random variable, where the surviving/measured
photon from the original wave packet has the correct polarization with probability
1− pS and the orthogonal with pS. If Eve is not present and the channel is assumed
to be perfect—that is, transmitting quantum states without altering them—, this
directly translates to a QBER value pS, since switches are independent from basis
choices, and each raw key bit born from a switched qubit will be erroneous.
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If there is an eavesdropper, the QBER introduced by the PS depends on the strategy
of Eve. During the Intercept-and-Resend (I&R) attack, Eve measures the polarization
in a randomly chosen basis, then sends a new qubit prepared in the state she measured.
The basis choices of Bob and Eve are independent. If Bob chose correctly, but Eve
did not, there is a chance that the resulting raw key bits will differ. Including th PS
effects into this framework, the analysis can be performed by a simple enumeration
of all relevant possibilities; we need only look at cases where Bob chose correctly [12].

1. If Eve chose correctly as well (50% of examined cases), she measures the correct
state with probability 1− pS and the wrong state with pS.

2. If Eve chose the conjugate basis (50% of examined cases), her measurement
results are still completely random (with probabilities 0.5, since PS happens
between orthogonal states.

Averaging these two, the total QBER is 0.25 + 0.5 · pS. Note that I&R in itself causes
an error rate of 0.25 when everything else is thought of as ideal; therefore, the added
QBER due to switches is halved compared to the situation where Eve is not present.

B92 example. B92 has three, rather than two different ways through which a
polarization switch can affect the process. Following the previous model, let us
suppose that a switch happens with probability pS. If Bob measures the switched
state in the correct basis—once again, using the independence of choices, this happens
half the time—, the result of measurement would be surely b = 1, but there will be
a certain mismatch between a and a′, causing a raw key bit error. However, if Bob
measured in the wrong basis, switches would not introduce any errors. A result b = 0

would lead to discarding both a and a′, whereas in case of b = 1, a = a′, which is not
problematic.

Table 2.2: Polarization switching effects in B92. Taken from Ref. [14].

Bit number 1 2 3 4 5 6 7 8

Intended state a ↗ ↗ → → → ↗ → ↗
Sent state ã ↗ ↘ → → ↑ ↘ → ↗
Measurement basis a′ + + × + + + + ×
Measurement result b 1 0 0 0 1 1 0 0
Alice’s raw key a 1 0 1
Bob’s raw key a′ 1 1 1
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Since there is no direct analogy to an I&R attack as described for BB84 in case
of B92, I am not discussing here the QBER resulting from PS and any type of
eavesdropping.

2.4 A Proposed New Transmitter Structure for the

BB84 Protocol

So far, the problems of unwanted polarization switches have been discussed, However,
I also foreshadowed the potential benefits of controlled polarization switching in
Sect. 2.3. My exact proposition, further elaborated in this section, is to take advantage
of the PS mechanism in VCSELs by deliberately modulating them between two
orthogonally polarized states and exploit it in BB84 implementations using single
photon polarization qubits.

2.4.1 Trivial and Proposed Transmitter Designs

Assume an implementation of the BB84 protocol with quasi-single photon polarization
qubits, built using attenuated lasers instead of true single-photon sources. Arguably,
the trivial option to build a transmitter for this application is to take four distinct
semiconductor lasers—either edge- or surface-emitting—with linearly polarized light,
align them in such a fashion that their polarization is exactly one of the four BB84
states |0〉, |1〉, |+〉 and |−〉 with polarization angles 0°, 90°, +45°or −45°, respectively
(Fig. 2.3). The first string of random numbers, the selection bits are responsible for
basis selection; essentially, they pick one pair of lasers. The key bits then choose the
desired laser from the pair. This configuration requires four individual semiconductor
lasers in one-to-one correspondence with the four states, as seen in Ref. [30], for
example.
One could think of plenty of different setups for achieving the same goal. Let us
focus on a solution, which I first outlined in Ref. [11], and later expanded the
analysis in Ref. [14]. This newly proposed transmitter design contains only two lasers;
namely, VCSELs which exhibit PS and can be modulated on demand between the
two eigenmodes. Since polarization switching happens between two orthogonally
polarized states, one such laser is suitable, in theory, to transmit both states found
within a certain basis. There is no one-to-one correspondence between light sources
and polarization angles anymore, rather between light sources and bases: one VCSEL
is oriented so that its eigenmodes lie along the directions of the diagonal basis,
whereas the other represents states in the rectilinear basis. Selection bits choose
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Figure 2.3: The trivial BB84 transmitter setup with four linearly polarized lasers. Taken from
Ref. [11] and Ref. [14].

one specific VCSEL along with its basis, while key bits decide how that VCSEL is
modulated to achieve lasing in the desired polarization (Fig. 2.4).

Figure 2.4: The proposed new BB84 transmitter setup with two polarization modulated VCSELs.
Taken from Ref. [11] and Ref. [14].

The most obvious benefit of this setup is that it uses two lasers instead of four, which
could lead to cost reductions compared to the trivial design. However, there are some
difficulties that need to be addressed before implementation, among which the most
significant is the following question: How does one achieve polarization modulation
in practice, and which option is best for the examined application?

2.4.2 Polarization Modulation of VCSELs

To obtain an answer, I first gathered the possibilities that have either already been
tried, or theoretically possible for the purpose of polarization modulation. Those which
are either impractical for the BB84 protocol’s implementation or seem unrealistic
with respect to realization constraints, need to be excluded from the list of candidates.
There are three main groups: external optical injection, modulation of a parameter
playing a role in polarization switching, and the use of specially designed VCSELs.
By injecting external, linearly polarized light into the laser cavity, the dominant
polarization eigenmode can be switched on demand. If this is done with the help of
additional “master” lasers, as seen in Ref. [79], the benefit of decreasing the number
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of lasers is lost. Such a solution is better suited and more prosperous for all-optical
signal processing. External optical injection can also manifest as polarization self
modulation (PSM), if part of the laser’s own light is reflected back into the active
region after 90°polarization rotation. Polarization self modulation means that the
two orthogonal states of polarization are modulated periodically in opposite phase,
with the modulation frequency depending on the effective cavity length. Although
this phenomenon is not exclusive to VCSELs, their shorter cavities can result in
higher frequencies of modulation; tens or hundreds of gigahertzes were estimated
from a theoretical point of view for general semiconductor lasers [80], and 6GHz was
experimentally demonstrated in VCSELs as early as the first part of the 90’s [81, 82].
The PSM operation differs from that expected in my case, rendering it useless for
the transmitter design: light sources in a BB84 transmitter should not send periodic
signals.
A second approach seems more straighforward: choose one of the parameters
influencing the stability regions of each eigenmode and modulate it so that the
laser can cross the boundaries between those regions. The parameter needs to be
easily accessible for modulation; this excludes built-in parameters of the laser (α,
γp, γa, . . . ), even if they are slightly current-dependent. Moreover, the related time
constants should be short enough so that high-frequency modulation would be
possible. Even if some switches are thermal in origin, the slow heating and cooling
speeds prevent quick changes between polarization states. Since switches are also
present at a constant active region temperature [83], temperature control is even
desirable for repeatability. Altogether, current-induced polarization modulation is
the only promising option both in terms of implementation and speed.
Most of the earlier studies focused on sinusoidal current modulation around a bias
point close to the DC polarization switching current. Gain-guided circular VCSELs,
where most of switching is attributed to thermal effects, are significantly limited
in terms of polarization modulation. Choquette et al. reported in 1994 that the
maximum frequency where a given laser exhibited switching was only 80 kHz [84].
Verschaffelt and colleagues analyzed a different VCSEL in 2002 [85], and defined
polarization modulation as successful if switching happened at least in 80% of signal
periods. The highest frequency fulfilling this criterion is 90 kHz—the same order of
magnitude as in the earlier study. In case of index-guided VCSELs, however, switching
can be mainly attributed to mechanisms much faster than heating or cooling [86].
As a result, one could expect faster polarization modulation frequencies for this type
of device, with early results achieving 50MHz [87]. The last two studies also briefly
mentioned pulsed mode current-induced polarization modulation, when lasers are
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biased near threshold, the current is suddenly increased above the DC switching
point, then decreased back again. In Ref. [86], the researchers did observe PS for
10 ns long current pulses, whereas in Ref. [87], the state of polarization turned out to
be stable when the modulation current consisted of 22 ns long pulses at a repetition
rate of 1 kHz. Altogether, pulsed mode PS modulation has not been extensively
researched so far to the best of my knowledge.
A 2018 study biased a VCSEL with hysteresis-free PS at the switching current, and
modulated it with 10µs long pulse-per-second (PPS) signals featuring rapid rise and
fall times [88]. With the help of polarization controllers, the PPS signal was then
recovered after one-way and back-to-back propagation in a telecommunication fiber;
the measured pulse width was 9.98 and 9.97µs, respectively, with some timing jitter
experienced between successive pulses.
Barve et al. conducted extensive research on current-induced polarization modulation
of VCSELs. They have shown experimentally that biasing a laser with a DC shifted
and gated RF signal (4GHz carrier frequency), where the gating function is essentially
the modulation content, a commercial-type VCSEL with known DC PS dynamics
can be modulated at the very high frequency of 1.35GHz [89, 90]. The research group
also investigated asymmetric index-guided VCSELs in their multiple transverse mode
regime, and achieved very high extinction ratios compared to earlier results [91]. As
an extension to this work, they could produce a polarization modulation frequency
around 300MHz by periodically modulating the RF signal’s carrier frequency and
keeping its power constant, and 1.5GHz by modulating its power and keeping the
carrier frequency constant [92]. The asymmetry provided by an elliptical mesa in
these devices may be thought of as a special VCSEL design, but less extreme as
those introduced in the following paragraphs.
The third possibility is that of VCSELs designed specifically for exploiting the
possibilities of using both polarizations. As long as the costs of the unique design do
not exceed the price of another laser device, these solutions should also be interesting
for application in BB84; the distinct features perhaps even make them more fitting.
Barve et al. continued their work by designing VCSELs for asymmetric current
injection through two pairs of orthogonally placed electrodes. This way, the two
orthogonal polarizations can be independently modulated, with a data rate of 4Gbps
having already been demonstrated [93, 94].
In another study, index-guided cruciform VCSELs (with cross-shaped transverse
cavity geometries) have been shown to produce on-demand polarization switching if
there is a small-signal current modulation around the DC switching point. Switching
at a modulation frequency of 50MHz was observed in 1994, limited by the modulation
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source [84]. Large-signal pulsed operation was also analyzed for the same devices;
periodic current variations between treshold and slightly above the switching point
caused the power in the eigenmode being stable at small currents to exhibit a
double-frequency pulsing. Between pulses, the laser was either biased above the PS
point or close to threshold, causing the intensity to drop. For frequencies above
10MHz, however, the second pulse in a period gradually loses its power and ultimately
disappears.

2.4.3 Realization Possibilities

Although the proposed design looks relatively simple in its block diagram form
(Fig. 2.4), the true physical implementation requires careful considerations so that
the transmitter is capable of the desired operation, without giving extra options
of eavesdropping to adversaries. I introduce two proposals (options A and B) for
current-induced polarization modulation, then I discuss the practical differences
between them. During discussion, suppose that the given VCSEL operates around
the lowest current PS point, below and above which x̂- and ŷ-polarizations are
dominant, respectively. The switching currents are µS if there is no hysteresis and
µSL < µSH if there is.

Figure 2.5: Polarization modulation options. (a) Option A: bias at the threshold and different
current pulse amplitudes; (b) option B: small-signal modulation around the bias in the DC switching
point. First pulse is x̂-polarized, second pulse is ŷ-polarized for both subplots, whereas the common
baseline is the threshold current µ = 1. Note that as an arbitrary choice, hysteresis is present in (a)
but not present in (b). Arrows denote stability regions; blue and red lines correspond to x̂- and
ŷ-polarized portions of the output light signal, respectively.

Option A (see Fig. 2.5(a) for an example) sets the DC bias current of the VCSEL
close to threshold. For x̂-polarized light pulses/photons, the laser is modulated with a
current pulse of amplitude µx̂ < µS(L) which does not cross into the bistable/ŷ-stable
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regions, whereas a ŷ-polarized light pulse is obtained by a current pulse of amplitude
µŷ > µS(H). Option B (Fig. 2.5(b)), on the other hand, sets the bias µB at the
switching point (µB ≈ µS) or within the bistable region (µSL < µB < µSH). x̂- and
ŷ-polarized light pulses are achieved by superimposing a current pulse of negative
amplitude µx̂ or positive amplitude µŷ onto µB, respectively. Both options have
benefits and disadvantages as well.
A common problem is that different bits (polarizations) are obtained with
different current pulses. Since semiconductor lasers have an approximately linear
current–optical power characteristic just above threshold, the intensity waveform
of light pulses will closely resemble the shape of current pulses, and amplitude
differences will result in proportional optical power differences. Additionally, the
state of polarization may not be constant during the whole duration of a pulse. This
is especially problematic for ŷ-polarized pulses in option A, which need to go through
the x̂-stable region of the parameter space to reach the intended polarization, then
back again; therefore, the start and beginning of the light pulse might be orthogonally
polarized to what is desired. VCSELs that are used in such a transmitter should be
carefully analyzed, so that the temporal evolution of polarization within a pulse is
well understood. Some of these issues may also arise in trivial transmitters, as no
two lasers are perfectly identical.
Obviously, different pulse shapes, sizes and incorrectly polarized fractions of pulses
are not to be allowed. A high degree of temporal overlap between signal shapes
corresponding to different bits is necessary, otherwise eavesdroppers might gain
information from the time of arrival. Differing optical power levels require differing
attenuation to reach the same mean photon number. Wrongly polarized photons could
lead to an increased QBER even in the absence of eavesdropping. Altogether, the
following features are necessary: pulse shaping, which uniformizes the optical powers
as a function of time, and acts as gating to block incorrectly polarized portions; and
fast variable attenuation to bring the average power level to a common value.
Both of these can be achieved by employing a lossy optical modulator.
Electro-absorption modulators (EAMs) are a formidable choice: these change their
absorption coefficients as a function of an externally applied electrical field/voltage
[95]. 3 dB modulation bandwidths can be really wide—values between 36 and 55GHz
are reported in several exemplary studies [96–98]—, which makes them suitable for
e.g. 56Gbps data rate in classical optical communication systems, and also for high
key transmission rates in BB84. High-speed devices sometimes exhibit low extinction
ratios, but the extinction ratio they provide (2.7–4.8 dB [96, 98]) is enough to cover
the differences between different pulse powers, since the first DC PS points are
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generally close to threshold. Note that the attenuation of a single EAM is not enough
to reach the quasi-single photon power level; therefore, the modulator should be
cascaded with an optical attenuator, responsible for the bulk of necessary losses.

Figure 2.6: Top row: EAM transmission TEAM as a function of time. Bottom row: corresponding
output optical power signals. (a) and (b) columns refer to options A and B, respectively, with the
input power signals being proportional to the current signals above threshold, as seen in Fig. 2.5.
Blue and red lines correspond to x̂- and ŷ-polarized portions of the output light signal, respectively.
The baseline is zero for all figures.

The main differences between options A and B are also important to notice.
As mentioned in the previous section, current-induced polarization modulation
of VCSELs is significantly better-known for small-signal modulation around the
switching point than pulsed-mode operation, making option B more promising at first
glance. Moreover, one could expect that pulses in option B have a higher polarization
extinction ratio, since there is no need to cross a region in which either of the
polarizations is instable before reaching the intended current values. However, the
negated pulse shapes of B require two distinct pulse shaping voltage signals driving
the EAM, whereas the shapes in A only differ in amplitude. Also, the average output
optical power is non-zero for option B, meaning that the modulator must block any
light leaving the transmitter between pulses; thus, B features higher losses and it is
less energy-efficient than A.
Figure 2.6 shows the ideal transmission TEAM of the modulator as a function of time,
along with the target, identical optical power signals for both polarizations. Note
the difference between transmission signal shapes of options A and B. In practice, a
transmission of identically 0 is not possible, and bias optical power suppression is
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Figure 2.7: Complete functional diagram of the proposed transmitter structure. VCSEL+ and
VCSEL× are the lasers emitting in the rectilinear and diagonal bases, respectively. Selection bits
enable one laser driver, disabling the other, while key bits control the output light pulses. Both
sequences are used to control the driver of the modulator, to ensure flexible pulse shaping. EAM:
electro-absorption modulator; VOA: variable optical attenuator.

significantly more important for option B. The transmission is defined as

TEAM (t) =
Pin,EAM (t)

Pout,EAM (t)
, (2.2)

where Pin,EAM and Pout,EAM are the modulator’s input and output optical powers,
respectively. The attenuation adBEAM, measured in dBs, is related to the transmission
as

adBEAM (t) = −10 · log10

(
TEAM (t)

)
. (2.3)

The driver of the modulator should be able to select the given voltage waveform based
on the key and basis selection bits at its input. The desired change in attenuation
needs to be properly translated into changes in voltage, as the relationship between
the two is non-linear for EAMs.
Figure 2.7 shows the detailed functional diagram of the proposed transmitter: two
lasers emitting in different bases driven by differentially enabled laser drivers, which
provide the necessary current signals based on the key bits. The VCSELs’ output
is connected to optical fibers, which are then coupled using a symmetric coupler,
leading into the modulator. The EAM is controlled by a driver, whereas a final
variable optical attenuator is responsible for decreasing the average power so that
the mean photon number of output qubits is around 0.1.
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2.4.4 Spectral Attacks

In case BB84 (or a decoy state based on BB84) is implemented with polarization
encoded single-photon qubits, it is vital to minimize information leakage through
different degrees of freedom. Such possibilities include spatial, temporal and spectral
differences between different states [99]. In the proposed design, mutual information
between bits and spatial modes can be all but eliminated using a single-mode fiber
section, while temporal differences are minimized by the modulator’s pulse shaping
function.
Spectral information leakage allows Eve to perform a spectral attack. A spectral
attack consists of performing a non-destructive frequency measurement on the photon,
which leaves its polarization properties intact, then sending it towards Bob. In the
trivial design, spectral attacks can be avoided by using lasers with largely overlapping
spectra. The leakage can be made arbitrarily small; one article reports an example,
where the mutual information between frequency and key bit value is, on average,
6.6 · 10−3 bits per state. However, due to the frequency split between eigenmodes of
a VCSEL, the new design has an inherent weakness against spectral attacks. Since
frequency and polarization are perfectly correlated, Eve can deduce the value of
the qubit without introducing quantum bit errors, thus remaining undetected. The
frequency split can be several tens of GHz [73], which is resolved within the spectral
resolution of current technology.
Let us consider first a worst-case scenario, when all four states are spectrally
distinguishable, with central frequencies fRL < fRH and fDL < fDH. R and D
denote the rectilinear and diagonal bases, while L and H stand for low and high As
a first step, Eve gathers information about the frequencies and guesses the bijective
function from the set of polarizations to the set of possible frequencies. There are
4! = 24 such permutations. If she guesses wrong, Alice and Bob abort the protocol
due to high QBER levels, and restart it. Eve is alerted about this via a public channel
announcement of the legitimate parties, and changes her guess. The eavesdropper will
eventually stumble upon the solution in at most 24 tries with a mean trial number
of 12 (assuming that she makes her guesses at random), allowing her to gain full
information without getting noticed.
The new design can only be of interest in a practical point of view, if the possibility
of successful spectral attacks can be averted. One solution, which is not provably
secure, but potentially useful in real-life situations with loosened assumptions about
Eve’s capabilities, is to use VCSELs with a frequency split that is small enough
not to be resolved experimentally with current technology. Even so, the correlation
between frequencies and bases should also be avoided—or else, Eve can first deduce
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the basis, then perform a polarization measurement in that basis. Therefore, the two
VCSELs should also emit in the same band.
There also exists a method of protection that does not rely on the advances of
technology, but requires two very similar VCSELs. Their respective low and high
frequency eigenmode spectra should overlap, so that the following relationship stands
between central frequencies:

fDL ≈ fRL (2.4)

fDH ≈ fRH. (2.5)

The split between low and high frequencies can be arbitrarily high. Now, the VCSELs
should be oriented in such a way that eigenmodes with frequencies fDL and fRH

correspond to a bit value 1 (or 0), whereas those with fDH and fRL correspond to 0
(or 1). Namely, lower and higher frequencies should carry opposite values of bits in
case of the two lasers [14].
This way, the correlation between frequencies and both bits and bases can be decreased
very close to zero, with some residual correlation due to the non-perfect spectrum
overlaps. The proposed transmitter design can thus be prepared to be safe against
potential spectral attacks as well.

2.5 Conclusion

I have described the general benefits of using VCSELs in low-power applications,
focusing on DV-QKD protocols, most notably BB84. For this protocol, I also proposed
a new transmitter design, which exploits polarization switching found in some
surface-emitting lasers. Modulating the polarization on-demand, two VCSELs are
enough to emit all four qubit states of BB84, leading to potential cost and size
reduction.
I have also carefully investigated the problems and concerns regarding this new design.
Two distinct current-driven polarization modulation options have been outlined, as
well as the suggestion of electro-absorption modulators for proper attenuation and
pulse shaping, to avoid leaking any information to eavesdroppers due to varying power
levels or temporal differences. A potential spectral attack has also been discussed,
when Eve uses the frequency split between polarization eigenmodes to distinguish
between all states, along with defence methods against it. This chapter forms the
basis of Thesis I.
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3.1 Introduction

The bulk of my research has been focused on quantum random number generation, a
topic briefly introduced in Section 1.4. This and the following chapter are describing
distinct, but very closely related QRNG architectures both theoretically and
experimentally.
A certain group of optical quantum random number generators extracts randomness
from the timing information of photon detections. Recall that following the convention
in Ref. [38], these QRNGs may be called time-of-arrival generators. First of all, I am
shortly introducing a selection of such devices.
Some ToA methods utilize quasi-single photon sources similar to those encountered in
practical DV-QKD implementations. The generator in Ref. [100] consists of a heavily
attenuated pulsed laser with mean photon numbers around 0.1, and the random
bits are extracted from the time elapsed between pulses that triggered a detection
event. Von Neumann extraction is applied to the bit sequence in order to reduce the
significant bias. A proof-of-concept device was based on a similar principle, but for
the purpose of bit generation, the laser pulses were grouped in a more sophisticated
way [101]. Another article reports bit generation by detecting long coherence time
photons, whose wave function overlaps many gating cycles of a SPAD [102]. The bits
are assigned based on the parity of the clock cycle where the detection happened.
Other researchers directly sampled the elapsed times between photon detections
from a light source (laser diode or LED) operating in CW mode. The exponential
waiting-time distribution was measured with good precision in the generator of
Ref. [103]. The non-uniformity was decreased by only keeping a certain number
of LSBs and applying hash functions for data whitening, with the remaining bits
fitting the min-entropy calculated in advance. The group of Wahl et al. used a
high-resolution (1 ps) time-to-digital converter and digitized the time differences at
16 bits. Resilient functions helped remove the residual bias present at the MSBs [104].
The generator was later reported to have had been operating in stable conditions for
20months continuously [105]. An interesting hybrid is also reported [106], where the
time between photon detections is digitized and assigned symbols from a four-letter
alphabet. Post-processing is then performed before converting letters to bits. CW
light is also the photon source in Ref. [107], where bits are generated after setting up
a coincidence window between two single-photon counting modules.
A prosperous idea is to use integrated designs, such as arrays of single-photon
detectors for photon detection, and thus increase the bit generation rates using
parallelization. In Ref. [108] detector pairs are chosen from an array, and arrival
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times are compared between each pair. A single-pixel generator is shown in Ref. [109],
where successive detection times are measured with respect to a reference clock
signal, then compared to each other. A potential prototype of a commercial QRNG
is demonstrated in Ref. [110], where the SPAD array and a low-efficiency LED are
integrated in a 3D chip packaging.
ToA QRNGs typically generate bits at rates in the order of 1–10Mbps [102, 107,
109–112] or slightly higher, e.g. 40Mbps in Ref. [103]. Some proof-of-concept devices
are slower, only achieving sub-Mbps speed [100, 101, 110], but there also exist
high-end devices, one of them reaching 152Mbps [104], while that in Ref. [108] could
potentially achieve 128Mbps through parallelization of 256 SPAD pixels. These values
are still lagging behind the capabilities of ASE generators, but with a significant
benefit: the source of randomness is better understood.
In this chapter, a ToA generator is discussed. Building on an idea introduced in a
previous publication, I created the mathematical model of the method, theoretically
deriving its bit generation efficiency and rate, among other characteristics, as a
function of input parameters.

3.2 Method of Random Number Generation

Figure 3.1: Timing diagram for the random number generation method. Top row: output pulses
from the single photon detector, bottom row: restartable clock signal; red dashed lines denote the
boundaries of intervals. Xj denotes the count of rising clock edges within the time interval described
by the random variable Tj = tj . “!” denotes a case of equality, where no bit is generated. Taken
from Ref. [113].

The investigated method of random number generation was first implemented based
on the detection of radioactive decay [41], but Mario Stipčević et al. replaced
radioactive materials with a continuous-wave light source, emitting photons at an
approximately constant rate [111]. Although they used an attenuated light emitting
diode (LED), it can be swapped for a semiconductor laser. It is known that the
arrivals of photons from an attenuated laser form a Poisson point process [26, 114]
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with a parameter λ describing the average number of photons per unit time. My
model was composed with laser diodes in mind, but in pracical situations, it can also
be applied to a LED-based setup (see Sect. 3.3.2).
A single-photon detector, either a single-photon avalanche detector (SPAD) or a
photomultiplier tube (PMT) detects incoming photons. The time elapsed between
two detections is then measured and registered on a signal processing unit. Two
consecutive time measurements are compared to each other, and a bit is assigned to
this pair based on whether the earlier or the later was longer. Every measurement
is used in only one comparison, otherwise subsequent bits would become highly
(anti)correlated. If intervals could be measured with infinite precision, the probability
of equality in the comparison would vanish. However, in practice, only an imperfect,
finite resolution measurement is possible. As an example, one may count the rising
edges of a clock signal between detections as a discrete approximation of the analog
interval length. This discretization causes the probability of equality to be greater
than zero. Equalities must be discarded to keep the distribution uniform, limiting
both the available bit generation efficiency and rate. The method is visualized in
Fig. 3.1.
It has been proven in Ref. [111] that it is advantageous to restart the clock signal
at each detection, rather than letting it run continuously (see Fig. 3.2). This is also
eliminating correlations between subsequent time measurements, which ideally should
be independent and uncorrelated. The authors operated the generator close to the
fast-clock limit, where the average number of rising edges between detections is large,
as this leads to the highest possible efficiency. I will show that this is, however,
suboptimal in terms of the bit generation rate for any configuration of parameters.
This random number generation method has been influential, the generator reported
in Ref. [112] uses the same principle completed by post-processing; however, the
hardware is integrated, not directly assembled from discrete components.
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Figure 3.2: An example of time measurement of intervals (top row) with continuous/non-restartable
(middle row) and restartable (bottom row) clock signals. tj denotes the length of interval j, nj is the
number of rising edges counted within interval j. Note the significantly different values measured
by the different clock signals; especially that n1 < n2 for a continuous clock, even though t1 > t2.
Taken from Ref. [1].

3.3 Mathematical Model

A good model is preferably able to explain as many of the underlying phenomena
as possible, all while remaining relatively simple and incorporating only a “few”
parameters. What “few” means is also relative: the ultimate measure of quality is that
the quantities or results predicted by the model shall be in a great agreement with the
experimental findings. Table 3.1 lists all parameters important to the method, and
whether they have been included in the final model. All noise parameters—λambient,
λdark and pafter—are excluded from the model by setting them to zero. The validity
of these choices will be explained in detail in Section 3.3, but as a general idea, their
values can be close to zero or at least—if applicable—significantly smaller than λ
with carefully chosen equipment. Thus, their effect on the random bit sequences can
be reduced to almost negligible levels.
Finally, three parameters are left: the input photon rate λ, which is defined so that it
already includes all propagation losses as well as the non-unit quantum efficiency of
the detector; the clock signal’s time period τ ; and the dead time τd of the detection
system, during which it is impossible to register any further events. Two basic types of
dead time can be distinguished: the extendable (or paralyzable) case, where detections
during a dead time increase its length, ultimately paralyzing the detector if the input
count rate is too high, and the non-extendable (or non-paralyzable) case, where the
detector is totally insensitive during a dead time and all incoming counts are rejected.
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These are both idealizations: a real device might exhibit a behaviour in between
these two extrema [115, 116]. In the current model, I take τd to be non-extendable,
an assumption that will be explained while discussing the experiments.
As a further simplification, both λ and τd are taken to be constant. In reality, the
photon rate is never truly constant, owing to e.g. thermal effects, while the dead
time changes stochastically between a lower and a higher boundary—the constant in
the model can be thought of as a mean value.

Table 3.1: List of possible relevant parameters of the mathematical model.

Parameter Description Unit Inclusion

λ Input photon rate of the detector 1
s X

λambient Rate of ambient noise photons hitting the detector 1
s 7

λdark Dark count rate of the detector 1
s 7

pafter Afterpulsing probability of the detector – 7

τ Period of the restartable clock signal s X

τd Dead time (non-paralyzable) of the detection system s X

The random variables governing the bit generation scheme are the (analog) time
intervals Tj and their discretized pairs Xj obtained from counting the rising clock
edges within the jth interval. Since λ is assumed to be constant, the underlying
Poisson point process is homogeneous, therefore all variables {Tj }j∈Z+ are identically
distributed. The same holds for the random variables {Xj }j∈Z+ . Together with
the independence of variables (see the explanation for the restartable clock), all Tj
(and Xj) are independent and identically distributed (i.i.d.). This will be exploited
in notation: if the index is unimportant, it is simply omitted, and only T or X is
written.
If Xj are i.i.d., then the difference between two successive discretized time
measurements Yi = X2i −X2i−1—which is itself a discrete random variable—has
a probability mass function (PMF) symmetric around zero. The bits are assigned
to the variables based on the value of Wi = sgn (Yi), where sgn() denotes the sign
function. P [Wi = 1] = P [Wi = −1] is a consequence of the symmetry of Yi; therefore,
the resulting bit sequence will follow a uniform distribution if the cases Wi = 0 are
discarded.
I decided to focus on the calculation of two main quantities. The first is the bit
generation efficiency ηR, defined as the average number of bits generated per random
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event; the second is the bit generation rate R, the average number of bits generated
per unit time. The two are related by the formula

R =
ηR
E[T ]

, (3.1)

where E[T ] is the expectation value of the random variable T ; that is, the average
duration of a random event.
For the given method, the efficiency is simply half the probability that two successive
time intervals are not measured to be equal. The factor of 1/2 comes from the fact
that two random events are used for the generation of each bit.

ηR =
P [X2i 6= X2i−1]

2
=

1− P [X2i = X2i−1]

2
=

1− Peq

2
(3.2)

It is trivial to see from (3.2) that 0 ≤ ηR < 0.5. Moreover, knowledge of the exact
probability distribution governing the random variables T and X is enough to
calculate both the bit generation efficiency and rate.
During the analysis, I start with excluding the dead time effects. This is a wildly
idealistic approach, and I will refer to it as the ideal case; however, it provides an
insight into the mathematical methods, and the results take simple forms. It also
serves as a baseline, a basis of comparison after the results are also obtained with
the dead time included.

3.3.1 The Ideal Case of Zero Dead Time

If there is no dead time, all detections must be modelled by zero-width pulses, so
that no matter how close they are to each other in time, their exact number can be
resolved. The time intervals between dead time free photon detections from a Poisson
point process follow an exponential distribution with parameter λ. The probability
density function (PDF) fT and cumulative distribution function (CDF) FT are given
in Eqs. 3.3 and 3.4.

fT (t) =

λe−λt, t ≥ 0

0, t < 0
(3.3)

FT (t) =

∫ t

−∞
fT
(
t′
)

dt′ =

1− e−λt, t ≥ 0

0, t < 0
(3.4)
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The PMF of the discrete variable X, P [X = n], can be calculated using the definition
of cumulative distribution functions:

P [X = n] = P
[
nτ ≤ T < (n+ 1)τ

]
(3.5)

= FT
[
(n+ 1) τ

]
− FT (nτ) (3.6)

=
(

1− e−λ(n+1)τ
)
−
(

1− e−λnτ
)

(3.7)

= e−nλτ − e−(n+1)λτ (3.8)

= e−nλτ
(

1− e−λτ
)
, (3.9)

where n ∈ N; the PMF is zero for any n < 0. Using the substitution p = 1− e−λτ one
finds that this PMF has the form of P [X = n] = (1− p)np, which is a failure counting
geometric distribution with parameter p. This is an interesting observation, since the
geometric distribution is the discrete equivalent of an exponential distribution, in
the sense that these are the only probability distributions holding the memoryless
property [117].
From the PMF, Peq may be calculated easily using the fact that subsequent (and
all other) measurement results are independent and identically distributed (i.i.d.).
Remember that independency arises as a consequence of a restartable clock signal.

Peq = P [X2i = X2i−1] =
∞∑
n=0

P [X2i = n, X2i−1 = n] (3.10)

=
∞∑
n=0

P [X = n]2 (3.11)

=
(

1− e−λτ
)2

∞∑
n=0

e−2nλτ (3.12)

=
(

1− e−λτ
)2

· 1

1− e−2λτ
(3.13)

=
e2λτ − 2eλτ + 1

e2λτ − 1
(3.14)

=
eλτ − 1

eλτ + 1
(3.15)

The equality between Eqs. 3.10 and 3.11 is the consequence of the i.i.d. relationship
between X2i and X2i−1. Moreover, the ordinary summation formula of a geometric
series can be used between Eqs. 3.12 and 3.13, exploiting that λτ is strictly positive,
thus

∣∣e−2λτ
∣∣ < 1 ∀λ, ∀τ ; therefore, the series always converges.

The bit generation efficiency takes the remarkably simple form

ηR (λ, τ) =
1− Peq

2
=

eλτ − 1

e2λτ − 1
=

1

eλτ + 1
, (3.16)
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Figure 3.3: Bit generation efficiency ηR in the ideal case as a function of (a) λ, for constant values
of τ ; (b) τ , for constant values of λ. The function is symmetric in its arguments, and monotonically
decays to zero as either of them is increased.

which is symmetric in the variables λ and τ ; specifically, it only depends on their
product. The efficiency approaches its maximum of 0.5 as λτ → 0—this is the so
called fast-clock limit—, and monotonically decays to zero as the product goes to
infinity (slow-clock limit). Figure 3.3 shows the efficiency as a function of purely λ
and τ , for different constant values of τ and λ, respectively, while Fig. 3.5(a) depicts
the two-dimensional surface plot along both variables simultaneously.
The bit generation rate R also involves the expectation value of time differences
between detections, which turns out to be the reciprocal of the input photon rate:

E [T ] =

∫ ∞
−∞

t · fT (t) dt =

∫ ∞
0

λt · e−λt dt =
1

λ
, (3.17)

meaning that R is not symmetric in its variables, but has somewhat more interesting
properties:

R (λ, τ) =
ηR (λ, τ)

E [T ]
=

λ

eλτ + 1
. (3.18)

Since E [T ] is independent of the clock period, for a constant λ, R is just a
monotonically decreasing function of τ , approaching its maximum of λ/2 as τ → 0.
This is logical, since with ever increasing time measurement precision, the probability
of equality decreases to zero, no comparisons are thrown away, and asymptotically
each two detections result in the creation of one bit.
Now, in a practical approach, it is more sensible to imagine a fixed clock period and
the ability to change the light source’s intensity—thus, the input photon rate—in a
continuous fashion. The qualitative behaviour of R (λ, τ = τ0) is quite simple to reveal
without looking at the function itself. As λ→ 0, the relative measurement precision
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Figure 3.4: Bit generation rate R in the ideal case as a function of (a) λ, for constant values of τ ;
(b) τ , for constant values of λ. Taken from Ref. [1].

Figure 3.5: (a) Bit generation efficiency ηR and (b) bit generation rate R in the ideal case as a
function of both λ and τ .

and the efficiency increases, but there are fewer and fewer detections; therefore, R
decays to zero. On the other hand, if λ→∞, almost every interval is measured to
be equal to all the others (Xj = 0 almost ∀j), and as the efficiency drops to zero, so
does the generation rate. In between, it is logical to assume that there is a certain
value of λ corresponding to a maximal bit generation rate, since R is non-negative
and not identically zero. Figure 3.4 shows that the intuition behind this reasoning is
right. The 3 dimensional surface plot is shown in Fig. 3.5(b).
The optimal photon rate that results in the maximum bit generation rate for a given
clock period,

λopt (τ) = arg max
λ

R (λ, τ), (3.19)

can be calculated by setting the partial derivative ∂R (λ, τ) /∂λ to zero and solving
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it for λ:

∂R (λ, τ)

∂λ
=

eλτ (1− λτ) + 1(
eλτ + 1

)2 = 0 (3.20)

=⇒ eλoptτ
(
1− λoptτ

)
+ 1 = 0 (3.21)

=⇒ λopt (τ) =
W0

(
e−1
)

+ 1

τ
≈ 1.27846

τ
. (3.22)

Here W0 (x) is the principal branch of the Lambert W function. The optimal photon
rate is thus inversely proportional to the clock period. There are two interesting
consequences regarding the efficiency. First, in order to maximize the bit generation
rate, some of the efficiency needs to be sacrificed: it will be significantly less than
0.5. Second, in the ideal, dead time free case, the efficiency corresponding to λopt
and Rmax is a constant value, independent from τ :

ηR,opt = ηR
(
λopt, τ

)
=

W0

(
e−1
)

W0 (e−1) + 1
≈ 0.217812. (3.23)

This means that on average, a little less than five time intervals between detections
are needed to generate one bit, but surprisingly, this leads to the most bits generated
per unit time.
Similarly to λopt, the maximal bit generation rate Rmax is also proportional to
the reciprocal clock period (Eq. 3.24), meaning that with better time measurement
resolution (smaller τ), it becomes possible to generate more and more bits per unit
time, given that our single-photon detector is safe to operate under the given intensity
value.

Rmax (τ) = max
λ

R (λ, τ) = R
(
λopt, τ

)
=
W0

(
e−1
)

τ
≈ 0.27846

τ
(3.24)

3.3.2 The Practical Case of Non-Zero Dead Time

To make the model more realistic, a dead time τd must be included, which is a
property of the single-photon detector and the time-tagging electronics. As mentioned
in Sect. 3.3, τd is taken to be non-extendable and constant. By these assumptions, the
random variable T can never be shorter than τd, and it follows a shifted exponential
distribution [104], its PDF and CDF taking the following forms:

fT (t) =

λe−λ(t−τd), t ≥ τd

0, t < τd;
(3.25)

FT (t) =

1− e−λ(t−τd), t ≥ τd

0, t < τd.
(3.26)
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The average time between detections is increased by exactly the length of dead time
compared to the ideal case.

E [T ] =

∫ ∞
−∞

t · fT (t) dt =

∫ ∞
τd

λt · e−λ(t−τd) dt = τd +
1

λ
=

1 + λτd
λ

(3.27)

As we have seen in the ideal case, the expectation value was the inverse of the count
rate. Without dead time, the input and output count rates are the same, since the
effects of quantum efficiency have already been accounted for in λ. In the non-ideal
case it is therefore reasonable to think of E [T ] as the reciprocal of the output count
rate [116]

λout =
λ

1 + λτd
, (3.28)

which is less than or equal to λ for every combination of non-negative λ and τd, and
has the limit of 1/τd as λ→∞.
The presence of τd 6= 0 is one of the reasons why LEDs can be substituted for laser
diodes as well: the dead time erases the photon bunching, which is a characteristic
of thermal light sources [103]. Additionally, the strong attenuation can be thought of
as high-probability random (Bernoulli) deletion of photons, which has been shown
to bring the photon number distributions close to Poissonian [118].
The dead time can be rewritten to the form

τd = kτ + ∆τ =

(
k +

∆τ

τ

)
τ, (3.29)

where k = bτd/τc is a non-negative integer and 0 ≤ ∆τ < τ . The ratio ∆τ/τ is
referred to as the “fractional dead time” in the following. At first, this form might
seem arbitrary, but it greatly simplifies the analysis. If the fractional dead time is
fixed, changing k only shifts the PMF P [X = n] to P [X = n+ k]: measuring a time
interval to be shorter than k times the clock period is impossible. It can be quickly
realized that both Peq and (consequently) ηR are shift-invariant, since the infinite
summation has the same terms with k zeros padded to the front. However, the bit
generation rate varies with k as well; Eq. 3.27 shows that the expectation value of a
time interval’s length depends on the entire value of the dead time.
Although it is possible to perform a unified analysis on how the distribution, ηR
and R change as k and ∆τ/τ are altered, it is interesting to treat the case of zero
fractional dead time (∆τ = 0) separately.

Zero fractional dead time. The reason behind this separation is that due to the
shift-invariance discussed above, ∆τ = 0 for any k results in a shifted geometric
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Figure 3.6: Effects of increasing k for τ = 1ns and zero fractional dead time. (a) Bit generation
rate R as a function of λ; (b) peak bit generation rate Rmax and optimal input photon rate λopt as
a function of k along with best-fit model lines. Increasing k decreases both parameters.

distribution of X (Eq. 3.30) and a bit generation efficiency unchanged from the ideal
situation (Eq. 3.23).

P [X = n] =

0, n < k

e−nλτ
(
1− e−λτ

)
, n ≥ k

(3.30)

The bit generation rate, on the other hand, is affected negatively by a higher k value,
since the average length of random events is increased:

R (λ, τ, τd = kτ) =
λ

(1 + kλτ)
(
eλτ + 1

) . (3.31)

However, in a qualitative aspect, for a constant τ (and τd), R is still a simple,
single-peaked function that vanishes as λ → 0 or λ → ∞. Its maximum value is
decreased compared to the ideal case, while the maximum’s location λopt is shifted to
the left. Its exact value can only be calculated numerically, since there is no analytical
solution for λ to the equation eλτ

(
λ2ττd + λτ − 1

)
= eλτ

(
λ2kτ 2 + λτ − 1

)
= 1.

Figure 3.6(a) shows several bit generation rate curves for τ = 1ns as a function of
τ with different k values. Subfigure (b) depicts how λopt and Rmax decrease as k
increases, along with best fit curves of the form a · xb + c. Curve fitting was done
using all samples from k = 0 to 499, yielding the approximations

λopt,fit = 1.195 · (k + 1)−0.5018 + 0.01102, and (3.32)

Rmax,fit = 2.737 · 108 · (k + 1)−0.9069 + 8.38 · 104. (3.33)

The respective R-squared values are 0.9966 and 0.9989. These can be briefly
summarized as λopt ∝∼ (k + 1)−0.5 and Rmax ∝∼ (k + 1)−0.9, where ∝∼ denotes
approximate proportionality.
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Figure 3.7: The dead time distorted geometric distribution of X for k = 0, λ = 0.5, τ = 1 (in
arbitrary units), and different values of ∆τ/τ . Probabilities for n > 5 are not shown. Taken from
Ref. [1].

Non-zero fractional dead time. For any non-zero value of ∆τ , X follows a dead
time distorted geometric distribution, for which the PMF (Eq. 3.34) can be obtained
from the CDF in Eq. 3.26:

P [X = n] =


0, n < k

1− e−λ(τ−∆τ), n = k

e−λ[(n−k)τ−∆τ] (1− e−λτ
)
, n > k.

(3.34)

This distribution, once again, only depends on k as a shifting factor, but it is
heavily altered by changing the fractional dead time. For a given λ and τ , P [X = k]

is gradually decreasing with increasing ∆τ/τ , and the probability is redistributed
among the other outcomes (see Fig. 3.7 for an example). At a certain value, depending
on all the aforementioned factors, the outcome X = k+1 becomes the most probable.
From the distribution, the formula for the probability of equality Peq can be calculated
using the same methods as in the ideal case, although the non-zero fractional dead
time made it significantly complicated:

Peq =
[
1− e−λ(τ−∆τ)

]2

︸ ︷︷ ︸
P 0

eq

+ e2λ∆τ

(
1− e−λτ

)2

e2λτ − 1︸ ︷︷ ︸
P+

eq

. (3.35)

P 0
eq is the probability that both X2i and X2i−1 have the value k—the least possible

for a dead time between kτ and (k + 1) τ—, while P+
eq is the sum of the contributions

of all other possible equalities. The formulae for the bit generation efficiency and
rate follow from simply substituting Peq and E [T ] into Eqs. 3.2 and 3.1, respectively.
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Figure 3.8: The contributions of P 0
eq and P+

eq to the total probability of equality Peq as a function
of λ, for τ = 1ns and four different values of the fractional dead time.

ηR (λ, τ, τd = kτ + ∆τ) =
1

2
·

1−
[
1− e−λ(τ−∆τ)

]2

−
e2λ∆τ

(
1− e−λτ

)2

e2λτ − 1

 (3.36)

R (λ, τ, τd = kτ + ∆τ) =
1

2
· λ

1 + λτd
·

1−
[
1− e−λ(τ−∆τ)

]2

−
e2λ∆τ

(
1− e−λτ

)2

e2λτ − 1


(3.37)

Once again, both Peq and the efficiency are independent of k. They have essentially
only two parameters: in one formulation, the products λτ and λ∆τ ; in another,
slightly more intuitive one, the product λτ (the average number of incoming photons
within a clock period), and the ratio ∆τ/τ (the fractional dead time). However, the
bit generation rate is a function of the entire length of τd, and it depends on four
parameters: λ, τ , k and ∆τ (or ∆τ/τ).
Qualitatively, R behaves differently from the previous cases if we fix the last three
parameters and only look at it in terms of λ (see Fig. 3.11 in the next section for
examples). If the fractional dead time is zero, the bit generation rate takes the form
of a single-peaked function that vanishes as λ→ 0 or λ→∞, regardless of the other
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Figure 3.9: (a) λpeak and (b) Rpeak for τ = 1ns as a function of ∆τ/τ for k = 0, 2 and 6. Same
colors denote the same k; continuous lines correspond to the lower-located peak (LP), dash-dotted
lines correspond to the higher-located peak (HP).

parameters. First, it should be noted that as ∆τ/τ is increased for a certain λτ ,
the relative contributions of P 0

eq and P+
eq to the total probability of equality change

significantly. For a fixed fractional dead time, the first is always single-peaked, while
the latter is monotonically increasing from 0 to 1 as a function of λ (or λτ). Figure 3.8
shows the plots along with their sum for four increasing values of ∆τ/τ .
Correspondingly, the bit generation rate has distinct features as well. For a given τ
and k, if we start to increase the fractional dead time from ∆τ = 0, the region around
the primary peak—the one that occurs for all parameter combinations—flattens out,
and eventually, beyond an appearance point

(
∆τ/τ

)
app a secondary peak emerges.

Additionally, let the phrase lower-located peak (LP) denote the peak that appears at
a lower λ, whereas higher-located peak (HP) denote the one appearing at a higher
photon rate. For k = 0 and 1, HP is the primary, and it has a higher associated
Rpeak value—thus, it is a global maximum. For k ≥ 2, LP is the primary, and usually
it remains the global maximum. The only exception comes for k = 2, where the
relative magnitude of the primary and secondary peaks vary with the fractional dead
time. (Note that the definition of the primary peak is based on the fact that its
location has a continuous curve as a function of the fractional dead time.) Figure 3.9
shows how the peak locations λpeak and the peak generation rates Rpeak (the local
maxima) change for different values of ∆τ/τ in three distinct cases (k = 0, 2 and
6). Figure 3.10 depicts how the appearance point

(
∆τ/τ

)
app changes for different k

values.
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Figure 3.10: The appearance point
(
∆τ/τ

)
app of the second peak as a function of k, τ = 1ns.

3.3.3 Simulation and Prior Evaluation

The validity and applicability of the model needs to be assessed carefully, since it is
based on several approximations and simplifying assumptions. Before going on to my
own experimental results in Sec. 3.4, I present some tools of prior evaluation; namely,
comparison to the data found in the original paper describing the model [111], and
simulation results obtained by MATLAB, which both address the correctness of the
R-curves and the “true” randomness of the generated bits. MATLAB has a built-in
method to generate pseudorandom numbers that are exponentially distributed.
Although these values are deterministic, the PRNG has a high enough quality (and
a long enough period) that the sequences are expected to pass the statistical tests.
The tests are unable to detect determinacy; therefore, it can only reveal possible
problems that are inherent to the bit generation method (not the PRNG), provided
we do not surpass the period length.

Comparison to existing data. In Ref. [111], Stipčević and Rogina reported to
have achieved a bit generation efficiency ηR = 0.487 ± 0.02 and a bit generation
rate R ≈ 1Mbps. The underlying parameters were λ ≈ 2 /µs, τ = 1/48 µs and
τd = 25ns. (The latter corresponds to k = 1 and ∆τ/τ = 0.2 in my formalism.)
Substituting these into the derived theoretical functions yield the results ηR ≈ 0.4897

and R ≈ 0.9328Mbps. These values suggest that the model is, indeed, a good
description of the physical device; the differences could be attributed to the fact
that λ is only given approximately and/or statistical fluctuations which had not yet
averaged out by the time the experimental results were recorded.
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Figure 3.11: Bit generation rate R as a function of λ for τ = 1ns and different values of ∆τ/τ .
(a) k = 0; (b) k = 2. Lines denote theoretical values, markers denote simulation results calculated
from 106 time intervals. Taken from Ref. [1].

Simulations obtaining bit generation rate curves. To see whether the
mathematical results are correct, we fixed the values of τ and τd and simulated
time intervals following a shifted exponential distribution for different input photon
rates. The simulated values are very much in agreement with the predictions for
as few as 103 generated intervals for each λ; however, if we increase the number
of intervals to 106, the conformity between the two is almost perfect. Figure 3.11
shows several different examples: single-peaked cases (τd/τ = 0.4 and 2.4), a function
where the secondary peak has barely emerged (τd/τ = 0.9), and situations with two
prominent peaks (τd/τ = 0.95, 2.9 and 2.95). The simulations even show continuity
for very high λ, where MATLAB could not plot the theoretical curves anymore due
to the limited magnitude of arguments its built-in exponential function can take.

Randomness testing. Randomness testing was conducted using the Statistical
Test Suite of the National Institute of Standards and Technology (NIST STS) [65].
In all simulations, τ and τd were kept constant at 1 and 0.4 ns, respectively. At first,
the most basic uniformity criteria was analysed: the relative frequency of ones/zeros,
that should be 0.5 ideally. Sequences were generated for 20 different values of λ from
106 time intervals, all passing the NIST Monobit test, proving that they are unbiased.
Figure 3.12(a) shows one particular result for the relative frequencies with the bounds
of acceptability. It can be seen that the bounds diverge as the input photon rate
increases: this is due to the fact that the bit generation efficiency decreases, the bit
sequences obtained from the same number of intervals are shorter and shorter, and
the requirements for accepting the null hypothesis become looser. Figure 3.12(b), on
the other hand, depicts the ratio of accepted sequences based on 1000 simulations
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Figure 3.12: Bias testing of simulated bit sequences for τ = 1ns and τd = 0.4ns as a function
of λ. (a) Proportion (relative frequency) of ones during the simulation of 106 intervals. Red lines
represent the bounds between which the NIST STS accepts the sequence as random. (b) Ratio of
successful sequences out of 1000 in total (for each λ separately), with sequences being generated
using 109 intervals. Red lines show the bounds of acceptability for the ratio test at a significance
level of α = 0.01. Taken from Ref. [113].

with each λ. Irrespectively of the input photon rate, the method was proven to
produce bias-free bit sequences.
A 109 long sequence was also generated at the specific value of λ = 0.4ns. In my
experience, this is the shortest length sequence, which is worthwhile to be subjected
to the entire NIST test suite, based on the different minimum recommendations of
the individual tests. The bit sequence passed the whole test battery at a significance
level of α = 0.01, showing no significant deviations from what is expected from
a perfectly random RNG. As a last step, the normalized autocorrelation function
(ACF) of a 108 long subsequence was also calculated. All coefficients ai corresponding
to a time lag i (apart from a0, which is 1 by definition) have small enough absolute
values. Notably, the correlation between successive bits is small (a1 = −2.75 · 10−4),
further supporting the claim that the method provides a way to generate uniformly
distributed bits, even without post-processing.

3.3.4 Information-Theoretical Considerations

Before heading onto the experimental realization of the random number generator,
let us take a short digression towards the further possibilities the current
time-measurement method can offer. It is possible to use the (dead time distorted)
geometric random variables with other bit generation methods. These may provide a
higher efficiency and bit generation rate, but might be less robust than the current
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solution. To analyze the amount of available randomness, we should reach out to the
notions of information-theoretical entropies.
If a variable Y has possible outcomes { yn }—where n ∈ J , some countable index
set—, and the probabilities of outcomes are denoted as P [Y = yn] = pn, the Rényi
entropy of order α is defined as [119]

Hα (Y ) =
1

1− α
log2

∑
n∈J

pαn

 . (3.38)

The base of the logarithm only changes the units in which the randomness is measured.
For the choice of 2, randomness is measured in bits, in line with all previous discussions
in this chapter.
Two specific types of the Rényi entropy are discussed for the geometric and dead
time distorted geometric distributions: the min-entropy H∞ and the Shannon
entropy H1 or simply H. The first is a more conservative measure of surprise,
since H∞ (Y ) ≤ H1 (Y ) for any discrete random variable Y ; the equality holds in case
Y is uniformly distributed. More generally, the Rényi entropies of a given distribution
are non-increasing in α [119].
The Rényi entropies share similarities with the bit generation efficiency ηR, since
both quantify the number of bits that are (or can potentially be) generated by a
given random variable. Analogously, we can define entropies per unit time as

hα (Y, S) =
Hα (Y )

E [S]
, (3.39)

where S is an underlying continuous random variable, describing the duration
necessary to measure Y , its discretized approximation. These quantities can be
directly compared to the bit generation rate; all of them are actually upper bounds
for R. h∞ is the strictest bound, since the same inequalities hold as for the simple
entropies.

Min-entropy. The min-entropy H∞ of a discrete random variable quantifies the
maximum amount of independent, uniformly distributed random bits that can be
generated from the process [38, 120]. Using the notation introduced above, H∞ can
be defined as

H∞ (Y ) = min
n∈J

(− log2 pn) = − log2 max
n

pn. (3.40)

For the geometric (Eq. 3.9) and dead time distorted geometric distributions (Eq. 3.34),
described by the variable X, the set of outcomes { yn } is the set of all non-negative
integers equal to or larger than k = bτd/τc; the notation can therefore be simplified
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as yn = n, n ∈ { k, k + 1, k + 2, . . . }. For k = 0, this coincides with the natural
numbers N (with 0 included). Let us use the notation

nm = arg max
n

pn (3.41)

for the most probable outcome, so that H∞ (X) = − log2 pnm . It is clear that for the
(shifted) geometric distribution, nm is always equal to k. However, it has been shown
that for the dead time distorted geometric distribution, nm can be either k or k + 1,
depending on the values of λτ and ∆τ/τ . As the fractional dead time increases, the
probability is being redistributed from k to k+ 1, and eventually the latter surpasses
the former. The min-entropy is maximized in the intermediate case when the exact
equality pk = pk+1 holds; thus, when

1− e−λ(τ−∆τ) = e−λ(τ−∆τ)
(

1− e−λτ
)
. (3.42)

This equation may be rewritten in the [λτ ]–
[
∆τ/τ

]
formulation. It can be solved for

the fractional dead time that maximizes H∞ for a given λτ , yielding the optimum(
∆τ

τ

)
opt

=
− ln

(
2e−λτ − e−2λτ

)
λτ

. (3.43)

If ∆τ/τ is smaller than this value, pk > pk+1, and vice versa. The corresponding
maximal min-entropy for a certain product λτ may now be calculated from either pk
or pk+1 by substituting the optimum in Eq. 3.43:

Hmax
∞ (X;λτ) = − log2 (pk)

∣∣∣∣∣
(∆τ
τ )opt

= − log2

(
1− e−λ(τ−∆τ)

)∣∣∣∣∣
(∆τ
τ )opt

(3.44)

= − log2

(
1− 1

2− e−λτ

)
.

In the slow-clock limit, as λτ → ∞, this maximum decreases to − log2 (0.5) = 1,
whereas in the fast-clock limit, the min-entropy grows without bounds for any value
of ∆τ/τ . Figure 3.13 shows the min-entropy in terms of λτ and ∆τ/τ . On the 3D
plot (left), a “ridge” becomes visible, along which Hmin is maximized for the given
λτ product. The function for

(
∆τ/τ

)
opt (Eq. 3.43) is also plotted onto the top view

(right). As the ridge perfectly overlaps with the dotted function, the calculations are
proven to be correct. Moreover, the marginal view from the λτ axis would reveal the
top contour of the plot to be equal to the value in Eq. 3.44.
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Figure 3.13: Min-entropy H∞ (X) as a function of λτ and ∆τ/τ . (a) 3D plot of the function
showing a “ridge” in yellow; (b) top view with

(
∆τ
τ

)
opt

highlighted by a dashed black line.

Shannon entropy. The Shannon entropy, widely used in classical areas, e.g.
in source coding and lossless compression, defines probability-weighted average
randomness of the possible outcomes. The index α = 1 is usually dropped, leading
to the definition and notation

H1 (Y ) = H (Y ) = −
∑
n∈J

pn · log2 (pn) . (3.45)

The geometric distribution with parameter p has the entropy

Hgeom (X; p) =
− (1− p) · log2 (1− p)− p · log2 (p)

p
. (3.46)

Substituting p =
(
1− e−λτ

)
, it can rather be expressed in terms of λτ :

Hgeom (X;λτ) =
λτ · log2 (e) · e−λτ − log2

(
1− e−λτ

)
·
(
1− e−λτ

)
1− e−λτ

. (3.47)

The Shannon entropy of the dead-time distorted geometric distribution (Eq.3.34)
can be phrased in terms of Eq. 3.47, yielding a somewhat less elegant closed-form
solution:

Hdead (X;λτ, λ∆τ) = eλ∆τ ·Hgeom (X;λτ)− λ∆τ · log2 (e) · e−λ(τ−∆τ)

+ log2

(
1− e−λτ

)
·
(

1− e−λτ
)
· eλ∆τ (3.48)

− log2

[
1− e−λ(τ−∆τ)

]
·
[
1− e−λ(τ−∆τ)

]
.

Just as in case of ηR, the Shannon-entropy is also calculated using
an infinite sum for the distributions in question. Therefore, its value is
translation-invariant—independent of k, but depending on ∆τ/τ . Note that the
two entropies are in the same family, as

lim
∆τ→0

Hdead (X;λτ, λ∆τ) = Hgeom (X;λτ) . (3.49)
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For both distributions, the entropy decays to zero in the slow-clock limit and diverges
towards infinity in the fast-clock limit. See Fig. 3.14(a) for details. The corresponding
Shannon entropies per unit time are derived from Shannon entropies just as R
descends from ηR:

hi (X) =
H i (Y )

E [T ]
=

λ

1 + λτd
H i (X) , (3.50)

where i ∈ { dead, geom }. Figure 3.14(b) shows the entropy per unit time as a function
of λ for different scenarios. The plot uses the same sets of parameters as Fig. 3.11(a)
for the sake of a quick visual comparison. The bit generation rate and hi are similar
qualitatively, but quantitatively the latter is significantly higher than the former.
R never exceeds 0.3Gbps for the given parameter set, while the entropy per unit
time may even exceed 1.5Gbps. Altogether, it can be concluded that there could
indeed exist methods, which can exploit more of the available randomness from the
variables {Xj } in case of time measurement with a restartable clock signal.

Figure 3.14: (a) Shannon entropy and (b) Shannon entropy per unit time of the geometric/dead
time distorted geometric distributions for k = 0 and τ = 1ns and different values of ∆τ/τ . The
dashed line on the left denotes 0.5, the theoretical maximal bit generation efficiency of the current
method. Taken from Ref. [1].

3.4 Experimental Verification and Bit Generation

After the convincing simulation results, the method and its descriptive model
was checked in practice as well. This consisted of building an experimental setup,
finding the limitations imposed by the devices, then comparing theoretical curves to
measurement data, and finally subjecting the generated bit sequences to randomness
testing.
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3.4.1 Setup of the QRNG

Laser VOA 1 VOA 2
1%

PMT

O/E

99%

µCDriver SP

Figure 3.15: Experimental setup of the time-of-arrival QRNG scheme. Driver: laser driver; VOA:
variable optical attenuator; µC: microcontroller; O/E: photodiode; PMT: photomultiplier tube; SP:
signal processing. Taken from Ref. [113].

The physical setup (Figs. 3.15 and 3.16) consists of the following elements. The photon
source is a semiconductor laser (Thorlabs LP520-SF15 ) emitting around a central
wavelength 519.9 nm. Biasing is managed by a driver circuit controlling the current
to maintain a predefined value. All optical fibers (Thorlabs 460HP) are specifically
designed to aid single transverse mode propagation in the wavelength band of interest,
using a core diameter of 2.5µm. The light intensity is attenuated using two successive
voltage controlled variable optical attenuators (VOA, Thorlabs V450F ), which are
set by a designated microcontroller-based board, and an optical splitter (Thorlabs
TW560R1F1 ). The 99% port of the splitter is used for monitoring, measured by
an amplified photodetector (Thorlabs PDA10A2 ), while the 1% port transmits the
signal, providing 20 dB of attenuation. Attenuators serve a dual purpose: they protect
the single-photon detector (a photomultiplier tube, PicoQuant PMA-175 NANO)
against high levels of input power, and they are responsible for tuning the photon
rate so that the operation can be evaluated on a wide range of parameter values.
Finally, the PMT’s output voltage pulses are time-tagged by a PicoQuant TimeHarp
260 time-to-digital converter (TDC) with a base resolution of τb = 250ps. The
comparison of time intervals and the corresponding bit assignment is software-based,
running on a computer directly accessing the TDC.
The exclusion of noise from the model can be explained by the parameters of the
PMT in question. Owing to the fact that it is sensitive towards the blue end of
the visible spectrum, the afterpulsing probability is zero, while the rate of dark
counts—which are thermal in origin—is specified to be smaller than 50 counts per
second at room temperature. When the whole setup was covered by a box, ensuring
that no external light is coupled into the fibers or directly into the PMT, the measured
total amount of dark and ambient counts was below 1 cps. This is significantly lower
than any input photon rate of practical interest. Thus, the randomness is almost fully
extracted from purely quantum effects. Further notable detector properties include
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Figure 3.16: Photograph of the time-of-arrival QRNG. Top left: laser and laser driver; middle left:
VOA driver and VOAs; bottom left: PMT; top right: splitter; middle right: photodiode. The TDC
and the compueter are not visible.

the maximum allowed output photon rate λout,max = 5 · 106 counts per second, the
quantum efficiency, which is approximately 21% at 520 nm, and the 180 ps FWHM
transit time spread.
The dead time of the detection system is dominated by that of the TDC with an
average value of τd = 2ns. The PMT has no direct dead time—that is, it remains
sensitive after detection, but detections happening sooner than 1.5 ns, the average
output pulse width, cannot be discriminated. τd is not constant, as it could be seen
experimentally. For the comparison of experimental and theoretical results, the latter
are still calculated assuming 2 ns long constant dead time. This simplification does
not bring forth significant differences. Although it is not explicitly stated anywhere
that the dead time is indeed non-extendable, but we can argue in favor of this
statement. Assume that the detection system is paralyzable. If τd is significantly
shorter than the mean time between photon arrivals, such that

τd �
1

λ
⇐⇒ λτd � 1, (3.51)
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the probability of a new arrival during the dead time duration is small. Therefore, the
insensitive period is unlikely to be extended, and the detector behaves approximately
as non-paralyzable. This condition holds for the experiments, as it will be shown
later.
The most significant deviation from the mathematical model is, however, something
else. The TDC operates with a continuous (non-restartable) clock signal, which
introduces correlations between successive bits and might change the bit generation
efficiency and rate drastically for the same parameter set. In the next section, I
introduce the high-precision regime, a domain of operation where differences between
continuous and restartable clocks are negligible both in terms of the quality of
randomness and the measures of bit generation, so that the experimental setup can
be used to validate the proposed model.

3.4.2 Effects of a Continuous Clock: The High-Precision

Regime

The high-precision regime (HPR) is defined as the domain of the parameter space
for which the following condition holds:

τ � 1

λ
⇐⇒ λτ � 1. (3.52)

The name of the domain implies that if condition 3.52 is true, then the discrete
time measurement yields a very precise result, since the average number of clock
periods per photon arrival time will be high. As λτ increases, the precision decreases,
and the setup leaves the HPR. The notion is similar in content to the expression
fast-clock limit introduced in Ref. [111], but slightly more generous, as λτ should
only be “small”, rather than approaching zero.
In the experiments, λout,max is limited by the detector’s tolerance. The corresponding
maximal input photon rate is

λmax =
λout,max

1− λout,maxτd
≈ 5.051 · 106

[
1

s

]
(3.53)

from which the worst-case—highest—values of λτ and λτd can be calculated to be

max
λ

λτ = λmaxτ ≈ 1.26 · 10−3 and (3.54)

max
λ

λτd = λmaxτd ≈ 1.01 · 10−2. (3.55)

Thus, the products are at least two orders of magnitude smaller than 1 in my
experiments, and both the HPR condition (Eq. 3.52) and the argument for using a
non-extendable dead time model (Eq. 3.51) hold.
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Figure 3.17: Simulations targeting the claim about the high-precision regime. Left: Bit generation
rate comparison of restartable clock measurements (dots) of the time sequence for τ = 1ns, and
theoretically derived curves for continuous clock measurements (dashed lines) as a function of
λ, using two different dead time values. Right: Absolute values of bit sequences’ autocorrelation
coefficients using λ = 0.002 ns (λτ = 2 · 10−3). (a) and (c): restartable clock, (b) and (d): continuous
clock; top row: τd = 20ns, bottom row: τd = 1ns. Taken from Ref. [113].

It can be argued that when the QRNG operates in the high-precision regime, the
differences between continuous and restartable clock methods are being suppressed,
as the drift between the two clocks is just a small fraction of the total time elapsed
between detections. In Ref. [111], it was already shown that the coefficient measuring
correlation between successive bits, a1, vanishes in the fast-clock limit. The claim
needs to be further supported by simulations, both concerning the autocorrelation
functions and the agreement between the respective ηR and R curves.

HPR simulations. The MATLAB simulations generated several 107 long arrays
of arrival time differences. For each array, a pair from two values of dead time (1 and
20 ns) and ten values of λ between 0 and 1 [1/ns] were chosen. The clock period τ was
1 ns, and bits were generated using both clock types from each dataset. Results are
compared in Fig. 3.17. The left subplot shows the bit generation rate as a function of
λ for the specified dead time values and clock types. It can be seen that the curves
belonging to the same τd are in excellent agreement as λτ → 0, but start deviating
around λτ = 0.2.
On the right, autocorrelation functions are shown for the bit sequences generated using
the smallest λ. The λτ product is 2 · 10−3 > λmaxτ , describing a more problematic
scenario than what shall be encountered experimentally. The top row represents
the two sequences generated with τd = 20ns, the bottom row represents those
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with τd = 1ns. The first column shows the coefficients for a restartable clock, the
second those for a continuous clock. There are no significant correlations in either
case; most importantly, none between successive bits (Table 3.2) generated with a
continuous clock. Moreover, the reported a1 values are all slightly negative, whereas
for a non-restartable clock positive values are expected [111]. This latter expectation
was further confirmed by my simulations (e.g. when using λ = 0.902 [1/ns]).

Table 3.2: Autocorrelation coefficient a1 of simulated bit sequences.

Clock

Dead time [ns] Restartable Continuous

1 −2.48 · 10−4 −2.55 · 10−4

20 −3.18 · 10−4 −3.56 · 10−4

Altogether, simulations confirmed that the results do not significantly differ between
the two clock types in the high-precision regime. Therefore, the experimental setup
is able to produce bit sequences and data by which the model can be faithfully
validated. This does not necessarily suggest that the experimentally generated bits
are going to pass all statistical tests; the cases when λτ is close to λmaxτ are going
to be especially susceptible to problems. It is, however, not expected that measured
bit generation rates are going to depart from theoretical values.

3.4.3 Experimental Validation of the Mathematical Model

In order to validate the predictions of the mathematical model outlined in
Section 3.3—that is, whether the theoretical functions derived for ηR and R conform
to reality—, bits need to be generated on a wide range of input parameter values.
From the three parameters, λ can be tuned without difficulty. τ may be increased
from its base value on the TDC, but it will remain non-restartable, whereas the dead
time is cumbersome to influence. First, experiments were conducted with the best
time measurement precision, τd was not altered externally, and the optical power
was changed in approximately even steps (around 5 · 105 counts per second) to cover
the full available range.
The bit generation efficiency and rate was calculated for each particular step using
the available data. Note that at this point, no randomness testing had been conducted
yet, focus was only on the macroscopic metrics. Figure 3.18 shows the obtained results
for ηR (left) and R (right): markers denote experimental data, whereas dashed lines
represent the theoretical curves.
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Figure 3.18: Bit generation efficiency ηR (left) and bit generation rate R (right) measured for
τ = 250 ps, τd = 2 ns and different values of λ. Lines: theoretical curves, markers: measured values.
Insets show functions for a wider range of λ for comprehensive understanding. Taken from Ref. [113].

The agreement between practice and theory is outstanding; the small deviations can
be attributed to the finite amount of generated bits, from which the metrics were
calculated. Note, however, the small insets in both figures, which show the functions
on a larger subset of their domain, revealing that experiments could only inspect
their first, quasi-linear sections. For the given time-measurement precision and dead
time, the bit generation rate would ideally peak at λopt = 1.5952 · 109 [1/s], yielding
152.88Mbps. The PMT is thus a bottleneck in the current setup, severely limiting
the number of generated bits per unit time to approximately 2.5Mbps. I deemed the
evidence gathered this far hopeful, but inadequate for a complete validation of the
model. For this, a secondary investigation was started, in which τ was changed as
well—but not by changing the settings of the time-to digital converter.

Software-Based Clock Signals. As mentioned above, the TDC is only able to
operate with a continuous clock. If τ was increased in hardware, the condition in
Eq. 3.52 would become less and less true, leaving the high-precision regime. This
solution is therefore unsuitable for the purpose of further model validation. However,
the time differences recorded with the base precision could be re-sampled using a
much slower software-based clock, which is easy to restart at each detection. This way,
the problem of restartability would cease to exist, and the introduced discrepancies
would be negligible.
The following reasoning helps support the claim. Suppose that a time interval sequence
is measured with a (relatively) high precision, using a clock signal with period τb.
At this point, it does not matter whether it was restartable or not. Now, from the
perspective of a software-based clock signal with period τsw, for which τsw >> τb
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Figure 3.19: Bit generation efficiency ηR (left) and bit generation rate R (right) measured for
τd = 2ns, selected values of software-based resampling clock periods τ and different values of λ.
Lines: theoretical curves, markers: measurement values. Taken from Ref. [113].

holds, the previously recorded values are almost analog. The fact that these were
already discretized before are only affecting the resampled values at the level of
some low-significance decimals. The same effect was present in the simulations of
Section 3.3.3, since the generated pseudo-random interval lengths had finite but high
precision, compared to which the clock signal was far less accurate. No inspection
showed any problems during simulations, neither as deviations from theoretical
curves, nor as failures in randomness testing, suggesting that re-sampling is a valid
operation.
I tested four different values of τsw, each of them at least a thousand times longer than
the base precision of 250 ps: 250, 875, 1500 and 2125 ns. The datasets were the ones
obtained for the results presented in Fig. 3.18. These clock period selections allow
us to observe the peaks in the R-curves. The outcomes are concluded in Fig. 3.19.
Once again, the validity of the mathematical model is confirmed with certainty, as
the experimental data almost perfectly matches the theoretical predictions.

3.4.4 Randomness Testing of Experimentally Generated Bits

All that is left is to generate suitably long sequences of bits at different count rates (1
to 5million output counts per second, with a step of ∼1million) and see whether the
generator can pass the statistical tests in the NIST Test Suite. Testing is performed
as outlined in Section 1.4.2, using one thousand subsequences, each one million bits
long, at each value of λ.
The bit sequences generally performed well on the tests: the ones recorded at the
three lowest λ values (1.01, 2.07 and 3.04million/s) passed each of the 188 total
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subtests both on the aspect of proportion and the uniformity of p-values. At higher
input photon rates, as the high-precision condition weakens, the bit sequences start
failing the Runs test on both aspects. This can be attributed to the continuous
clock signal used for measurement. The Runs test counts the number of blocks of
uninterrupted sequences of identical bits—such a block is called a run—and compares
it to a theoretical value. The software’s detailed output suggest that the number
of runs is generally too few: the switches between ones and zeros is not as frequent
as it should. This is clearly a consequence of a positive autocorrelation coefficient
between successive bits, which stems from the non-restartable nature of the clock.
The bit sequence generated from the highest optical power signal failed one more
test: a Non-Overlapping Template Matching tests, which counts the occurrences
of the specific template 000001111. This template, which rarely switches between
different bits, occurs much more frequently than it should in some subsequences,
pointing at the presence of a positive autocorrelation between subsequent bits. The
test only failed at the proportionality aspect (978/1000 success rate, slightly below
the acceptable 980/1000). Table 3.3 sums up the number of successful tests for the
different bit sequences, along with the proportion of success and uniformity p-values
obtained in case of the Runs test.

Table 3.3: Number of successful tests out of 188 for the time-of-arrival QRNG method for different
photon rates with detailed results of the Runs test. Asterisks (*) denote failure of the test on the
specific aspect.

Mean λ [106/s] Successful tests
Runs test

Proportion Uniformity p-value

1.01 188 994/1000 0.331408
2.07 188 991/1000 0.382115
3.04 188 985/1000 0.003967
3.72 187 977/1000* 0.000000*
4.80 186 792/1000* 0.000000*

All together, in the HPR, the generator is capable of producing random numbers that
cannot be distinguished from the output of an ideal QRNG, without the need for
any kind of post-processing. As the HPR condition weakens, the generator becomes
prone to slight errors due to the induced autocorrelations. These could be removed
by a simple, computationally non-demanding post-processing method, e.g. a bitwise
self-delayed XOR operation with a delay longer than the distance over which bits
are significantly correlated.
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3.5 Conclusion

I have created a mathematical model of a quantum random generation scheme based
on the difference of successive photon arrival times. The model focuses mainly on
the architecture’s macroscopic metrics, the bit generation efficiency and rate. I have
also shown that these two functions are not maximized simultaneously; the highest
possible rate is achieved by loosening the requirements towards the efficiency.
The model’s validity has been supported by simulations, focusing on both the relevant
functions and the quality of randomness, while also incorporating the real system’s
deviations from the model. Finally, experimental results have been demonstrated to
be in almost perfect agreement with theory, and the generator was found to work
properly under most practical conditions. Slight correlations are only introduced by
a continuous clock signal used for time measurement at the configurations yielding
the highest bit generation rates. The device is able to produce sequences of random
numbers that cannot be distinguished from those coming from a truly uniform
distribution. This chapter forms the basis of Thesis II.
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Efficiency Improvement of the

Time-of-Arrival QRNG Method
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4.1 Introduction

No matter how good are the results reported for the time-of-arrival quantum random
number generator described in the previous chapter, it can be seen that it features a
significant trade-off. Reliability and stability are the main benefits, but the scheme
only extracts a fragment of the available min-entropy, so the bit generation rates
are moderate. This chapter introduces a new method of random number generation
building on the “old” scheme. This method is able to increase both the bit generation
rate and efficiency, while keeping most of the positives of its predecessor; such
as an inherently almost-uniform distribution, relatively simple hardware and no
post-processing. All this comes at the expense of needing a more stable light source
and slightly more complex signal processing.
The method described in Chapter 3 achieves robustness and a uniform distribution of
bits through intentionally discarding all cases where two successive time measurements
yielded equal values. By doing so, the bit generation efficiency ηR remains smaller
than 0.5 in any situation—and it has been shown that maximizing the efficiency
does not maximize the bit generation rate R simultaneously.
I propose a new bit generation scheme using the same types of time measurement
comparisons as described in the previous chapter, which increases both ηR and R
compared to the old scheme by precisely setting the distribution of comparison
signs and only discarding a smaller set of outcomes. All notations are retained
from Chapter 3; however, the optimal photon rate, the bit generation rate and the
maximal bit generation rate of the old method are now denoted as λ′opt, R′ and R′max,
respectively, while R refers to the rate of the new method.

4.2 Grouping of Comparisons for Improved

Efficiency

Briefly described, the improved method is as follows. The input photon rate λ
(once again, including all kinds of losses, along with the quantum efficiency of the
single-photon detector) is set to a certain value λ0 (τ,∆τ), such as the probability
of equality Peq (λ0, τ,∆τ) between successive measurements takes the value 1/3.
Thus, the variables describing the sign of the ith comparison, Wi = sgn (Yi) will be
uniformly distributed on the set {−1, 0, 1 }:

P [Wi = n] =

1/3, n ∈ {−1, 0, 1 }

0, otherwise.
(4.1)
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Now, let us form m-long (m ∈ Z+) disjoint groups from successive comparison results
to obtain vector-valued variables Vs =

(
Wms,Wms−1, . . .Wms−(m−1)

)
. Since {Wi } are

i.i.d random variables—note that the measurement clock is still assumed to restart at
every detection—, every Vs is uniformly distributed on {−1, 0, 1 }m. The cardinality
of this set is 3m, so the probability that Vs takes either of its values is 1/3m. The
min-entropy limiting the maximum number of uniformly distributed random bits
that can be generated from such a variable is

Hm
∞ (Vs) = − log2

(
1

3m

)
= m · log2 (3) . (4.2)

Only an integer number of bits can be assigned to any random variable; therefore,
the best possibility is to assign bm · log2 (3)c bits to an m-long group. Obviously, this
is only enough to cover 2bm·log2(3)c outcomes, which is strictly less than the total 3m.
Those outcomes that have no associated bit sequence will be discarded; as long as
the circumstances are ideal, it does not matter which ones.
It will become obvious that increasing the value of m does not necessarily imply
a higher efficiency or generation rate, but the space generated by the outcomes
is growing exponentially, making the mapping of bits to outcomes increasingly
troublesome.

4.2.1 New Bit Generation Efficiency

The bit generation efficiency is defined the same way as previously: it quantifies
the average number of bits generated per random event. To be comparable to
the old method, one random event should still mean one time difference between
successive photon detections. If m was chosen to be one, the available min-entropy is
H1
∞ (Vs) = H∞ (Wi) = log2 (3) ≈ 1.585 bits, smaller than two. Ultimately, assigning

one bit to two of the three outcomes and discarding one of them is the same as the
old method at the specific efficiency of 1/3.
Generally, however, all other m values yield higher efficiencies than 1/3, and most,
but not all, are above 1/2—the theoretical limit of the old scheme. The efficiency in
terms of m takes the form

ηR (m) =
bm · log2 (3)c

2m︸ ︷︷ ︸
ηR,A(m)

· 2
bm·log2(3)c

3m︸ ︷︷ ︸
ηR,B(m)

, (4.3)

depicted in Fig. 4.1. The first term, ηR,A (m), is the number of assigned bits
divided by the number of random events required for a bit assignment (m
comparisons constitute of 2m random events). It is bounded from above
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Figure 4.1: Bit generation efficiency ηR (m) as a function of group length m. The red line denotes
0.5, the theoretical maximum efficiency of the old method. Taken from Ref. [5].

by log2 (3) /2 ≈ 0.7925, which is also a good approximation of the term for
large m. The second term, ηR,B (m), is the ratio of outcomes that are
not discarded. Since m · log2 (3)− 1 < bm · log2 (3)c < m · log2 (3), this “oscillates”
between 2m·log2(3)−1/3m = 0.5 and 2m·log2(3)/3m = 1, and it is largely responsible for
the suddenly changing pattern of the efficiency in terms of the group length (Fig. 4.2).
Altogether, the efficiency has an upper bound of log2 (3) /2 ≈ 0.7925, the product
of the individual upper bounds of the two terms. The first three highest efficiency
values are the following:

ηR (m) ≈


0.6667 for m = 2,

0.7358 for m = 7,

0.7810 for m = 12.

(4.4)

During theoretical analysis, m = 2 is given particular attention, but results are
always derived for a general m as well.

4.2.2 Optimal Photon Rate for the New Scheme

As mentioned above, the method only provides perfect uniformity if the generator
is operated at a certain combination of measurement clock period, non-extendable
dead time and input photon rate—the latter denoted by λ0. The optimal photon
rate is a function of other parameters, τ and ∆τ , and it can be obtained by solving
the equation Peq = 1/3 for λ. Once again, we may separate two cases: zero fractional
dead time, so that Peq takes the simple form in Eq. 3.15; and non-zero fractional dead
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Figure 4.2: First and second terms of the bit generation efficiency ηR (m) as a function of group
length m.

time, with the probability of equality being a more complicated function (Eq. 3.35).
Since Peq is independent of k, the same holds for λ0. Knowing the optimal photon
rate, the bit generation rate can be obtained combining Eqs. 3.1 and 3.28:

Rm (τ, τd) =
λ0

1 + λ0τd
· ηR (m) (4.5)

Keep in mind that λ0 is the same for all choices of m, since it is the photon rate that
makes the prior distribution of Wi uniform.

Zero fractional dead time. In the first situation, the dead time is an integer
multiple of the measurement clock period, τd = kτ , k ∈ N. The equation for the
probability of equality,

eλτ − 1

eλτ + 1
=

1

3
, (4.6)

can be solved for λ analytically. The optimal photon rate is inversely proportional to
τ , just as in the dead time free calculations for the old method (Eq. 3.22):

λ0 =
ln (2)

τ
. (4.7)

The corresponding bit generation rate is also proportional to the reciprocal of the
clock period, but it also depends on the whole length of the dead time—thus, on k
as well.

Rm (τ, τd = kτ) =
ln (2)[

1 + k · ln (2)
]
τ
· ηR (m) (4.8)

Particularly, substituting m = 2 gives the function

R2 (τ, τd = kτ) =
2 ln (2)

3
[
1 + k · ln (2)

]
τ
≈ 0.4621[

1 + k · ln (2)
]
τ
. (4.9)
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Figure 4.3: Optimal input photon rate λ0 as a function of τ and ∆τ/τ . Units of time and count
rate are arbitrary and reciprocal to each other. Taken from Ref. [5].

Non-zero fractional dead time. If the probability of equality takes the more
complicated form found in Eq. 3.35, the equation Peq (λ, τ,∆τ) = 1/3 has no
analytical solution for λ, and numerical calculations are needed. From λ0, Rm can be
found by simple substitution into Eq. 4.5. The values for λ0 and R2 as a function of
τ and ∆τ/τ are shown on Fig. 4.3 and Fig. 4.4, respectively (the latter is restricted
to k = 0).
It can be seen that for constant fractional dead time, λ0 decreases presumably
reciprocally with increasing τ , although the multiplicative coefficient depends on
∆τ/τ . For constant τ , however, a fractional dead time between 0.6 and 0.7 maximizes
λ0. Similar observations can be made about the reciprocal decay of R2 with reducing
the time resolution. The highest bit generation rates can be produced for small τ
(good measurement resolution) and small fractional dead times.

4.2.3 Bit Generation Gain Over the Old Scheme

I wanted to obtain a proof, along with quantitative results, to show the superiority
of the improved scheme over the previous one. It has been done based on the bit
generation efficiency by choosing a suitable m with ηR (m) > 0.5; now, it will be
shown that the improvement applies to R as well.
One way to do this is to compare the bit generation rates of the two methods at
λ0—this is not completely fair, though, as λ0 is not the optimal photon rate for the
old method. The two can be analytically compared if ∆τ = 0; R′ then takes the form
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Figure 4.4: Bit generation rate R for k = 0 and m = 2 as a function of τ and ∆τ/τ . Units of time
are arbitrary; R is shown in bits per time unit. Taken from [5].

in Eq. 3.31. Substituting Eq. 4.7 yields

R′ (λ0, τ, τd = kτ) =
ln (2)

3
[
1 + k · ln (2)

]
τ

=
1

2
R2 (τ, τd = kτ) ; (4.10)

thus, the new method generates bits at twice the rate in λ0, assuming that m = 2.
This clearly originates from the fact that ηR is 2/3 at λ0 for the new scheme and only
1/3 for the old; the output count rate’s multiplicative factor is the same for both.
A better comparison can be obtained by evaluating the relation between the
theoretical maximal rates of the two methods. For this, I defined the bit generation
rate gain GRm as the ratio of the respective peak bit generation rates of the new and
old methods for a given τ and τd. In case of m = 2, the gain can be calculated as

GR2 (τ, τd) =
R2 (τ, τd)

maxλR′ (λ, τ, τd)
. (4.11)

Analytical solutions exist only if the dead time is taken to be zero, since the old method
does not have a closed form for its peak bit generation rate R′max for any non-zero τd.
Using Eqs. 3.22 and 3.24, λ′opt = arg maxλR

′ (λ, τ, τd) and R′max = maxλR
′ (λ, τ, τd)

can be expressed in terms of λ0 and R2.

λ′opt (τ, τd = 0) =
W0

(
e−1
)

+ 1

τ
=
W0

(
e−1
)

+ 1

ln (2)
· λ0 (τ, τd = 0) (4.12)

≈ 1.8444 · λ0 (τ, τd = 0) (4.13)

R′max (τ, τd = 0) =
W0

(
e−1
)

τ
=

3 ·W0

(
e−1
)

2 ln (2)
·R2 (τ, τd = 0) ≈ 0.6026 ·R2 (τ, τd = 0)

(4.14)
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Figure 4.5: Bit generation rate gain GR2 as a function of τ and ∆τ/τ for (a) k = 0 and 2; (b)
k = 5, 10 and 100. Both subplots have identical color scaling. Units of time are arbitrary. Taken
from [5].

Thus, the gain for m = 2 and no dead time is approximately 1.6595. The inclusion of
any positive value of dead time is, once again, requiring a numerical solver. Figure 4.5
concludes the results in two subplots. The gain was calculated for k = 0, 2, 5, 10
and 100, and ∆τ/τ ranging from 0 to 1. Note that significant numerical errors were
found if k is small, τ is close to zero and ∆τ/τ approaches one: the argument of
MATLAB’s exponential function is too high to produce a meaningful result, and the
peak of the old method’s rate cannot be found. This section is therefore not shown
on the graphs.
The plots reveal several interesting details. First, as the fractional dead time gets
to 0, the surface representing k = 0 reaches 1.6595, the value obtained previously
using Eq. 4.14. Second, the new method is capable of producing higher maximal bit
generation rates than the old one (GR2 > 1) seemingly at all combinations of input
parameters if m is set to 2. The gain is practically independent of the measurement
clock period, but its k and ∆τ/τ dependencies are noteworthy. For small values of k
(0, 1 or 2), GR2 decreases rapidly for increasing fractional dead time; if k is higher
than that, the surfaces become more and more flat, indicating that the fractional
part has a decreasing effect on the gain.
Moreover, a larger k generally implies a smaller GR2 the compared values k1, k2 are
greater than 3. The gain is theoretically maximized and approaches 2 if k = 1 or 2
and ∆τ/τ vanishes.
A more general gain definition can also be found to account for any possible value of
m. Since λout is a common factor of all bit generation rate equations, GRm can be
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expressed by multiplying GR2 with a ratio of m-dependent efficiencies:

GRm (τ, τd) =
Rm (τ, τd)

maxλ{R′ (λ, τ, τd)}
=
Rm (τ, τd)

R2 (τ, τd)
·GR2 (τ, τd) =

ηR (m)

ηR (2)
·GR2 (τ, τd) .

(4.15)

Thus, the surfaces are simply rescaled versions of those in Fig. 4.5. Specifically,
GR7 ≈ 1.1037 ·GR2: increasing m from 2 to 7 boosts the yield by 10.37%.
A third way to compare the schemes is looking at their peak performances on a
hardware with given capabilities—time measurement resolution, dead time and
maximum allowed λout. This, however, is difficult to generalize; for the particular
system I used during my work, the reader may find the comparison results in Sec. 4.4.

4.3 Error Sensitivity

There is a practical difficulty compared to the original method described in Chapter 3:
in theory, the Poisson point process governing the bit generation should truly be
homogeneous—λ needs to be a constant. Slow changes in the optical power were not
of concern in the old scheme, since the self-differentiating method made sure that
their effects were eliminated. The new method, on the other hand, requires either
very precise power control, or the tuning of the measurement clock period to keep
Peq at 1/3.
Even if these are both implemented, the distributions of Wi and Vs will deviate from
uniform, since it is impossible to have infinite numerical precision in the software
governing the settings. In this section, I devise a realistic one-parameter error model
describing the deviations from ideality, obtain bounds which the error parameter
should not exceed, and show that even in the case of errors, it is possible to assign
bits to outcomes so that the bias remains zero.

4.3.1 Error Model

The error model assumes that the probability of equality Peq = P [Wi = 0] deviates
from the idealistic value 1/3 as described by an error parameter ε = Peq − 1/3

Note that ε ∈
[
−1/3; 2/3

]
. Due to the fact that Yi follows a symmetric probability

distribution, P [Wi = −1] = P [Wi = 1]—the same phenomenon that was exploited
by the old method. Normalization constraints require that the PMF is now of the
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Figure 4.6: Error model for the probability mass function of Wi for (a) positive and (b) negative
ε.

form (see Fig. 4.6)

P [Wi = n]


1
3

+ ε, for n = 0,

1
3
− ε

2
, for n = ±1,

0, otherwise.

(4.16)

Obviously, the vector-valued variables Vs will neither be uniformly distributed if
ε 6= 0. The probabilities of Vs (joint probabilities of Wms, . . . ,Wms−(m−1))

P
[
Vs = (n0, n1, . . . , nm−1)

]
=

m−1∏
t=0

P [Wms−t = nt] (4.17)

only depend on the number of equal comparisons (c) involved. Note that the
independence of Wi variables was exploited in the calculations once again. As c
ranges from 0 to m, the 3m different joint probabilities may only have one of m+ 1

distinct values, namely

pc,m (ε) =

(
1

3
+ ε

)c(
1

3
− ε

2

)m−c
, c = 0, 1, . . .m, (4.18)

which greatly reduces the complexity of the error analysis. In the following discussion,
ε is assumed to be constant. Although its value fluctuates along with the optical
power fluctuations, we can once again use the argument that the time scale of bit
generation is significantly shorter as that of thermal effects. Therefore, ε can be
assumed constant over the generation of e.g. hundreds of thousands of bits.
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Figure 4.7: Min-entropy of the distorted distribution as a function of ε for (a) m = 2 and (b)
m = 7. Red lines show the number of bits assigned by the method for the specified group length.
Taken from Ref. [5].

4.3.2 Min-Entropy of the Distorted Distribution

There is an important metric quantifying the deviations from ideality, which can be
readily calculated from the obtained probabilities: the min-entropy. As it is known,
it only depends on the highest probability value from the PMF. It can be seen that
this maximum only depends on the sign of the error parameter for the previously
derived distribution.

pmax,m (ε) = max
c
pc,m (ε) =

p0,m, for ε ≤ 0

pm,m, for ε ≥ 0
(4.19)

Correspondingly, the min-entropy can be summarized in terms of ε:

Hm
∞ (ε) =


m · log2 (3)−m · log2 (1 + 3ε) , for ε < 0

m · log2 (3) , for ε = 0

m · log2 (3)−m · log2 (1− 1.5ε) , for ε > 0.

(4.20)

The min-entropy is smaller than its error-free value for all non-zero ε; the rate
of decrease is, however, slightly more significant if ε > 0 (equalities are favored).
If Hm

∞ (ε) becomes smaller than bm · log2 (3)c, we cannot assign as many bits as
possible to the outcomes. Therefore, ε should always stay within a range so that
the min-entropy condition Hm

∞ (ε) ≥ bm · log2 (3)c is satisfied. This provides us an
interval of error parameters, outside of which the method fails theoretically.
Figure 4.7 shows the min-entropy as a function of the error parameter for m = 2 and
7. It can be seen that for smaller values of m, the acceptable interval is wider. We
cannot, however, conclude that choosing a higher m results in a more sensitive bit
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generation scheme if the error is within the respective interval—on the contrary, as it
will be shown in Section 4.4. One could even argue that the error is dispersed more
evenly between a higher number of possible outcomes. The respective intervals for
m = 2 and 7 are approximately

−0.0404 ≤ ε(2) ≤ 0.0202 and (4.21)

−0.00628 ≤ ε(7) ≤ 0.00314. (4.22)

The min-entropy condition in itself does not prove that the method operates free
of errors. The resulting bit sequence will still deviate from what we expect from a
perfect random number generator. The extent of deviations depend on the magnitude
of ε, and also on how bits are assigned to different outcomes. Fortunately, the worst
problems can be avoided by carefully designing the bit assignment function.

4.3.3 Bias Elimination

Arguably, the greatest flaw of any QRNG is a non-zero bias, when the relative
frequencies of zeros and ones differ from each other. Its presence also foreshadows
other related statistical problems of the generated bit sequences. As an example, a
QRNG that fails the bias related Frequency test of the NIST STS will definitely fail
the Runs test as well—so much so that passing the former is the prerequisite of even
running the latter [65].
However, for the error model discussed hereby, we will show that the bias
can be systematically eliminated by utilizing the underlying symmetries of
the resulting distribution, irrespectively of the value of ε. First of all, let
us find a natural ordering for the outcomes Vs =

(
Wms,Wms−1, . . .Wms−(m−1)

)
.

By increasing each element of the vector-valued variable by one, we get
Us =

(
Wms + 1,Wms−1 + 1, . . .Wms−(m−1) + 1

)
. Now, treat Us as a number in its

ternary representation, Wms + 1 signifying the most significant ternary digit (MST)
and Wms−(m−1) being the least significant one (LST). Us can take on any values
between 00 . . . 02 = 0d and 22 . . . 22 = (3m − 1)d, where d denotes the decimal
numeral system. The ternary values already imply a “natural” ordering of outcomes.
Using this ordering, it is trivial to see that the distribution of Us (and Vs) will be
symmetric around the mid-point represented by the value (3m − 1) /2—since the
probabilities only depend on the number of ones among the ternary digits, which
represent comparisons with equality. See Fig. 4.8 as an example if m is chosen to be
2.
As a shorthand notation, index all outcomes with the decimal representation a of
their ternary values, a ∈ Am = { z ∈ Z | 0 ≤ z < 3m }. Denote the probability of
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Figure 4.8: Distribution of Us for ε = 0.1 and m = 2. The red line denotes 1/9, the error-free
probability of all outcomes.

outcome a with p(a). Define another set, Bm ⊂ Am that contains a ∈ A if and only
if a is the index corresponding to a non-discarded outcome. This set has a cardinality
of |Bm| = 2bm·log2(3)c.
To understand how the problem of bit assignment can be approached, we need the
notion of the Hamming weight w of bit sequences. w denotes the number of non-zero
elements—ones in the binary case—in a sequence. Define wa as the Hamming weight
of the bit group assigned to outcome a. For discarded outcomes, wa shall remain
undefined. The amount of bias can be described in terms of the probability-averaged
Hamming weight over all non-discarded events, defined as

w (m) =

∑
a∈Bm p (a) · wa∑
a∈Bm p (a)

. (4.23)

Here the denominator is a factor of re-normalization, which deletes the effect of
discarded outcomes from the average. In bias-free circumstances, on average, one out
of two bits is a “1”. Translating this to bit groups assigned to outcomes, the bias-free,
ideal probability-averaged Hamming weight of groups should be

wid (m) =
bm · log2 (3)c

2
. (4.24)

Every particular bijective assignment of bit groups to non-discarded outcomes can be
called a coding function C : a ∈ Bm → { 0, 1 }bm·log2(3)c. It is possible to systematically
eliminate bias in the given random number generation method if there exists such
a set Bm ⊂ Am for which it is possible to construct a coding function C so that
w (m) = wid (m) independently of ε. Such a coding function is then called a bias-free
coding on Bm.
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It can be shown that such coding functions do indeed exist for the underlying
symmetric distributions. A general, sufficient but not necessary rule of construction
is to assign complementary bit groups (those with maximal Hamming distance) to
two equiprobable outcomes. An example for m = 2 is shown in Table 4.1, along
with the relevant parameters mentioned in the discussion. The probability-averaged
Hamming weight provided by this coding is

w(2) =
6 · p0,2 + 6 · p1,2

1− p2,2

=
6 · (p0,2 + p1,2)

4 · (p0,2 + p1,2)
=

3

2
= wid (2) , (4.25)

proving it is free from bias.

Table 4.1: A particular bias-free coding function for m = 2. The outcome a = 4 is discarded.

B2 = { 0, 1, 2, 3, 5, 6, 7, 8 }

a W2i W2i−1 p(a) = P [W2i,W2i−1] Bits Weight wa

0 -1 -1 p0,2 000 0
1 -1 0 p1,2 001 1
2 -1 1 p0,2 010 1
3 0 -1 p1,2 011 2
4 0 0 p2,2 - -
5 0 1 p1,2 100 1
6 1 -1 p0,2 101 2
7 1 0 p1,2 110 2
8 1 1 p0,2 111 3

The presented coding method can be algorithmically extended to arbitrary values
of m. The main idea is the following. The only outcome without an equiprobable
“pair” is always the one in the middle of the ordering, described by Us = 11 . . . 13 or
a = (3m − 1) /2. Therefore, this must definitely be discarded. Now, choose pairs of
equiprobable outcomes that are placed symmetrically around this mid-point, and
discard them. Continue this until you reach the desired amount of non-discarded
events. After that, assign the bit groups from 00 . . . 02 to 11 . . . 12 to the remaining
outcomes in increasing order. See Algorithm1 for details (here the discarded events
are directly placed around the mid-point).
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Algorithm 1: Bias-free coding generalized for any value of m
Data: m-long array of comparisons W
outcomes:= 3m ; // Total number of outcomes

kept:= 2bm·log2(3)c ; // Number of not discarded outcomes

discarded:=outcomes−kept ; // Number of discarded outcomes

lower_limit := 0.5 ·
[
outcomes− 1− (outcomes− discarded− 1)

]
;

upper_limit := 0.5 ·
[
outcomes− 1 + (outcomes− discarded− 1)

]
;

for i = 1 to m do

W(i)++ ; // Forming ternary arrays

decimal_value=ternary_to_decimal(W) ; // Ternary to decimal

conversion

if decimal_value<lower_limit then
bits=decimal_to_binary(decimal_value) ; // Return the binary

value of the ternary array left-padded with zeros

else

if decimal_value>upper_limit then

bits=decimal_to_binary(decimal_value)−
(

3m − 2bm·log2(3)c
)
;

// Return a modified binary value to account for

discarded outcomes

else

bits=[] ; // Do not return bits

A bias-free coding cannot and will not fix all statistical problems that are due to
a non-zero ε. It actually favors some bit groups over others; for the example given
in Table 4.1, negative ε values will show preference towards the patterns 000, 010,
101 and 111, whereas positive ε values will increase the relative frequencies of 001,
011, 100 and 110. However, since all possible coding functions exhibit some kind of
deference under non-uniform distributions, a bias-free choice is always better than
others.

4.4 Experimental Results and Applicability

Theoretical results suggest that the newly formed method is capable of increasing the
bit generation efficiency and rate of the simple time-of-arrival QRNG scheme, while
the requirements toward physical devices change very little. In this section, it will
be shown that this can be achieved in practice as well. By monitoring the changes
of the photon rate and slightly modifying the parameters to reach a quasi-uniform
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distribution, the new scheme is capable to generate high-quality random bit sequences,
which pass all the NIST tests without any post-processing.

4.4.1 The Experimental Setup

The setup of physical hardware is only slightly modified from that used for the
original method (Fig. 3.15). The monitor point is pulled before the first attenuator,
and the linear photodetector’s output voltage is read every second by a Matlab
script realizing a PI controller. The controller tunes the laser’s current to maintain
a constant reading value specified by a script parameter. Long-term measurements
have been conducted on the monitor detector’s output voltage, suggesting that once
steady-state is reached, its value stays within ±0.185% of the target voltage 99.1% of
the time. If this stability could be achieved at the detector’s input, the corresponding
error parameter would be smaller in absolute value than ≈ 5.7 · 10−4, within the
min-entropy condition’s acceptable interval for both m = 2 and 7.
The PMT’s input photon rate, however, exhibits higher degrees of fluctuation.
Although it is quite stable over the duration of several millions of detections, slow
drifts can be observed on longer time scales, presumably due to the temperature
dependence of the VOAs placed after the monitor point. This effect can only be
cancelled indirectly, since it is impossible to efficiently control the power if monitoring
is done either between the two attenuators or just before the PMT. The intensity
levels at those points are at best similar to—but, especially at the input, significantly
lower than—the noise level of linear photodetectors.
Let us revisit some important device parameters from Section 3.4. The PMT has a
maximum allowed output count rate of 5 · 106 [1/s], corresponding to a slightly higher
input photon rate of 5.05 · 106 [1/s] through the system dead time that is around 2 ns.
The time-to-digital converter operates with a best-case resolution of τb = 250 ps, its
clock signal is continuous, cannot be restarted at every detection. As generally a
higher λ requires a smaller τ (higher clock frequency) to set Peq = 1/3, the fastest
possible clock signal we may require using this detection system is that belonging to
λout,max: 138.74 ns≈ 555τb. Every potential value of τ is therefore at least two and a
half orders of magnitude larger than the base time measurement resolution.

4.4.2 Setting and Maintaining the Probability of Equalities

Decreasing the resolution of the TDC card is not an appropriate way of setting τ
to its desired value, since all analysis was conducted on a system with a restartable
clock. On the other hand, we can once again utilize the idea from Section 3.4.2: we
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Figure 4.9: Experimental setup of the refined QRNG scheme. Driver: laser driver with a built-in
PI controller; O/E: photodiode; VOA: variable optical attenuator; µC: microcontroller; PMT:
photomultiplier tube; SP: signal processing. Taken from [5].

can define a restartable clock of period τ in software and apply it to a data set
measured with the best possible resolution. If τ � τb holds, the fact that it is rather
a re-discretization and not a discretization of truly analog values, will not become
noticeable. This solution offers a second benefit as well: there is no need to control
the optical power to perfectly fit a preset measurement resolution—which would be a
futile endeavor. Rather, we can periodically estimate λ by counting the time it takes
to reach a certain number of detections to account for the intensity drifts, and tune
the software-based clock to obtain the expected distribution. The estimation period
of λ (Nλ detections) should be short enough that the Poisson point process can be
assumed homogeneous over its duration, but long enough to keep the estimation
precise.
I recorded six different data sets, each at least ten minutes long, at four different
input photon rates. The first three used λ values around 1.35, 2.55 and 3.63 · 106/s,
respectively. The last three data sets were measured with the same settings (the
highest λ, approximately 4.8 · 106/s), but due to power fluctuations, they are not
of identical quality. Since τd � τ for each case, the ratio ∆τ/τ = τd/τ is close
to zero. For this reason, the first idea was to simply update τ using the inversely
proportional relationship in Eq. 4.7. This would require less computing power than
solving a complex equation for the “true” clock period, but it is not immediately
obvious how much it affects the quality of randomness. Altogether, three different
clock assignment methods were tried, as listed below.

1. Simple: τ s = ln (2) /λ.

2. True: τ t obtained from numerically solving Peq = 1/3.

3. Heuristic: τh =
(
τ s + τ t

)
/2.

The heuristic approach was a result of slight initial failures in tests for bit sequences
generated using both options 1 and 2, as it will be discussed in the following section.

92



Ph.D. Thesis: Optical Solutions for Quantum Key Distribution Transmitters

4.4.3 Results and Statistical Testing

Finding the most suitable estimation period and clock assignment method proved
to be a gradual process, in which one of the variables was altered, twelve bit
sequences—six for both m = 2 and 7—were generated and ultimately tested, until an
acceptable result was achieved. Moreover, using the distribution ofWi, a best-fit error
parameter ε was calculated for each period. As a starting point, τ was chosen to be
updated every Nλ = 107 detections, corresponding to approximately 2.04–7.41 seconds
for the given range of input photon counts. First, the simple τ assignment was tried
for both values of m. This solution already produced satisfactory results unless the
photon rate was increased slightly below its allowed maximum and m was chosen to
be 2.

Table 4.2: Number of successful tests out of 188 for a photon rate update period of 107 detections
with different τ -designation methods.

Mean λ [106/s]
Simple Heuristic True

m = 2 m = 7 m = 2 m = 7 m = 2 m = 7

1.35 188 188 188 188 187 187
2.55 188 188 187 188 187 188
3.63 188 188 188 186 188 188
4.75 177 187 187 185 184 188
4.78 174 188 187 188 188 187
4.91 175 188 184 188 187 187

Table 4.2 concludes the number of successful tests for the different combinations of λ,
m and τ assignment. In most cases, the number of failed subtests is between 1 and
4, apart from the last three instances in the first column. On average, bits generated
using m = 7 performed slightly better compared to those with m = 2; this difference
is the most pronounced in case of τ = τ s.
The reported ε values were always small enough to stay within the limits provided
by both Eq. 4.21 and 4.22, keeping the min-entropy condition satisfied for m = 2 and
7 as well. Moreover, the goodness of fit was always close to one, indicating that my
error model correctly describes the deforming distribution. Generally, the following
tendencies can be seen (see Fig. 4.10). First, for a given clock assignment method,
the mean of ε decreases (tends towards negative values), while its variance increases
with increasing λ. Second, as the simple and heuristic methods assign a τ value that
slightly decrease the probability of equality, these solutions cause ε to almost always
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Figure 4.10: Histograms of best-fit ε values for different clock assignment methods (rows) and
photon rates (columns) for an update period Nλ = 107.

remain negative. Both effects are the most pronounced in case of a simple clock
assignment.
For smaller values of λ, the true assignment favors almost exclusively positive ε. Even
in this theoretically best scenario, about half of the generated bit sequences failed a
small number of tests. It was seen in Section 4.3 that the method is more sensitive if
ε > 0 with regard to its min-entropy. Since it can also be true with regard to other
issues, the heuristic method was meant to provide an intermediate solution offering
slightly negative ε. Ultimately, this idea did not solve the problem, with the reported
success ratio decreasing somewhat.
Rather than twisting the way of calculating the clock period any further, I decided to
try different values of Nλ. A slightly longer (2 · 107) update period produced similar
results, a significantly shorter one (106) degraded the randomness quality noticeably,
but choosing Nλ = 5 · 106 was really promising. The simple τ assignment was already
abandoned in this scenario, leaving only the heuristic and true methods. The test
results (Table 4.3) show a general improvement over previous values of Nλ even in
the heuristic case. Moreover, with a true τ and m = 2, three of the six bit sequences
failed only one of the Non-Overlapping Template tests (a separate one in each case)
on proportionality. The respective passing ratios of 979, 979 and 1000 fell just outside
the acceptable interval 980–999. The three remaining sequences did, however, pass
all tests. The best results were obtained for a choice of true τ and m = 7: none of
the six sequences showed any noticeable deviations from a uniform distribution.
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Table 4.3: Number of successful tests out of 188 for a photon rate update period of 5 ·106 detections
with different τ -designation methods.

Mean λ [106/s]
Heuristic True

m = 2 m = 7 m = 2 m = 7

1.35 188 187 187 188
2.55 188 188 188 188
3.63 187 188 188 188
4.75 188 188 187 188
4.78 186 186 188 188
4.91 188 187 187 188

By changing the update length, the ε values remained at the same order of magnitude,
and also exhibited the same tendencies as before (Fig. 4.11). However, the variance
increased, shown by the fact that histograms span across wider intervals.
A final performance comparison needs to be made between the two schemes on the
same physical hardware. Assuming that m = 7, the maximal bit generation rate on
the current setup is

λout,max · ηR (7) ≈ 3.679Mbps. (4.26)

This is 47.25% greater than the 2.5Mbps achievable with the old method
(Section 3.4.3). Note also that the old method failed some tests, most notably the
Runs test when operating near the maximal bit generation rate, due to the continuous
clock inducing a positive correlation between neighbouring bits. However, the new
design passed everything in the vicinity of said maximum.
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Figure 4.11: Histograms of best-fit ε values for different clock assignment methods (rows) and
photon rates (columns) for an update period Nλ = 5 · 106.

4.5 Conclusion

The new bit generation method proposed in this chapter proved to be better
than the one discussed earlier. By increasing the efficiency through maintaining
an almost-uniform distribution and careful grouping of its outcomes, less events need
to be discarded, leading to an overall gain in terms of the bit generation rate. Although
the uniformity demands precise power control and updating a software-based clock
signal’s period to counteract drifts in optical intensity, this is a minor inconvenience
in light of the advantages. The effects of deviations from uniformity (a non-zero ε)
have been calculated in terms of the min-entropy. This chapter forms the basis of
Thesis III.
Further research could provide more insight into how this error influences other
aspects of randomness for the generated bit sequences, and how the choice of group
length m relates to sensitivity towards errors. Moreover, the basic idea behind the
new scheme can be generalized as well. Forming groups of outcomes from uniform
distributions, for which the cardinality of the sample space is not a power of 2, may
increase the bit generation efficiency for good choices of group length. How this
applies for cardinalities other than 3, the case which was discussed beforehand, is
also worthy of inspection.
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Chapter 5

Novel Scientific Results - Summary

of Theses

Thesis I.

I proposed a specific solution to use vertical cavity surface-emitting lasers in the BB84
DV-QKD protocol, which are responsible for sending two of the four states. This could
lead to the potential cost and size reduction of the transmitter circuitry. I also analyzed
other degrees of freedom of quantum states, which provide opportunities to eavesdrop
without getting noticed. I suggested countermeasures against these loopholes based
on realistic arguments, which take into account the practical realization constraints.
I.a) I introduced a new transmitter design for the BB84 protocol, which only

uses two VCSELs instead of the four light sources found in the trivial design. To
obtain all four states of BB84, the VCSELs’ polarization switching mechanism is
exploited. This switching happens between two orthogonal eigenstates; on-demand
switching is called polarization modulation. General benefits of VCSELs in low-power
applications also make this solution preferable over edge-emitting lasers.
I.b) I proposed two different current-induced polarization modulation scenarios.

The first biases the VCSEL near threshold, and applies different amplitude pulses
to obtain different polarizations; the second sets the bias near the polarization
switching point and applies small-signal modulation around the bias. I showed that
two problems can be solved by inserting an electro-absorption modulator into the
light’s path. First, attenuation can be changed quickly to account for the inherently
different power levels between the obtained eigenstates. Second, the modulator is also
suitable for pulse-shaping, which cancels incorrectly polarized parts of the pulse and
creates an arbitrarily precise temporal overlap between differently polarized signals.
I.c) I highlighted the fact that the new transmitter design is susceptible to
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a spectral attack, where the eavesdropper measures the frequency of photons to
distinguish between differently polarized quantum states. In the trivial design, this
could be overcome by using four lasers with overlapping spectra; however, VCSEL
polarization eigenmodes are always separated in frequency. I proposed a method that
offers protection even if Eve can measure frequency without destroying photons. First,
choose two VCSELs, for which the spectra of lower and higher frequency eigenstates
are pairwise largely overlapping. Then assign bits to frequencies in a complementary
way. This renders bits and frequencies, and also bases and frequencies, uncorrelated.
The eavesdropper is thus unable to gain information about the polarization by the
spectral degree of freedom—not more then she could if a trivial transmitter were in
use.

Related own publications: C6, C7, B1

Thesis II.

I derived the mathematical model of a quantum random number generation method.
It is based on comparing the measured lengths of two successive time intervals between
photon detections, and assigning bits based on the sign of the difference, discarding
equal cases. I focused mainly on how two figures of merit—the bit generation
efficiency and the bit generation rate—change as functions of the relevant parameters.
I simulated the method, also incorporating deviations from the model found in the
physical setup, before evaluating the model’s validity through experiments. The
theoretically derived and measured results show an excellent agreement.
II.a) I determined the decisive parameters, with which the method can be modelled

faithfully, and discarded those which are negligible in my physical implementation of
the generator. I derived formulae for the bit generation rate and efficiency analytically,
based on probability theoretical arguments, as a function of the parameters: the
input photon rate λ, the time measurement precision τ and the detection system’s
dead time τd. Fixing the latter two, and changing only λ, I showed that it is not
possible to maximize both figures simultaneously, and the maximal bit generation
rate corresponds to a lower-than-ideal efficiency.
II.b) I showed that the efficiency only depends on the fractional part of the ratio

τd/τ , and is invariant under changing the ratio’s integer part, greatly simplifying
the analysis, providing solutions for all possible parameter combinations. The bit
generation rate, however, is a function of the whole length of the dead time, but it
arises readily from the efficiency formula, through a multiplication by the output
photon rate of the detector.
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II.c) I introduced the concept of the high-precision regime, when λτ � 1, and
argued that in the HPR, the negative effects of a continuous clock are almost negligible
compared to a restartable clock. I supported this claim by further simulations, showing
that the correlations between bits are kept low in the HPR, while the bit generation
efficiency and rate agree with those calculated in the model.
II.d) I conducted experiments and verified the validity of my mathematical model.

I showed that the measured bit generation efficiency and rate, as a function of
the input photon rate for fixed values of τ and τd, are in a remarkable agreement
with the theoretical predictions. The effects of device limitations—continuous time
measurement clock, non-constant dead time—are small enough so that the figures
of merit do not deviate from the derived values. Furthermore, I tested the quality
of randomness of the generated sequences, showing that in the HPR, a continuous
clock does not compromise the uniformity of generated bits.

Related own publications: J1

Thesis III.

I created a refined version of the random number generation method known from
Thesis II., which increases both the bit generation efficiency and the bit generation rate
by forming groups of m comparison signs and assigning multiple bits to each group. I
compared the refined method with the old one quantitatively, and obtained formulae
for the bit generation rate gain. I also took into account the effects of non-uniformity
due to small but non-vanishing light intensity fluctuations and analyzed how those
affect the quality of randomness. Finally, I verified experimentally that the proposed
method is indeed capable of creating random numbers, which pass all NIST statistical
tests without post-processing.
III.a) I proposed to change the previous bit generation method such that the

signs of comparisons are uniformly distributed. I derived that it is only possible for
certain combinations of input photon rate λ, time measurement precision τ and dead
time τd. I showed that this alone is not suitable for extracting more bits than one
per comparison, since the floor function applied to the min-entropy is still one. This
limitation is always present if the cardinality of the sample space is not a power of
two. However, one can form m-long groups of successive comparisons, for which the
difference between the min-entropy of the new vector variables and its integer part
is smaller. Therefore, higher bit generation efficiencies are feasible. I showed that
values of m = 2 and 7 are corresponding to higher efficiencies, while the resulting
space of outcomes is still kept relatively small.
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III.b) I quantified the improvements over the old method in several different ways:
comparing the bit generation rates in the settings tailored for the refined method, and
introducing the bit generation rate gain GRm as the ratio of the maximum/optimal
rates of the new and old methods given a fixed dead time and time measurement
precision. Depending on the how long τd is compared to τ , the gain varies significantly
between 1 and 2, showing that the new method is always capable of generating bits
faster than the old one.
III.c) I created an error model for the random number generation method, where

the distribution of comparison signs is not uniform, but symmetric. I derived the
maximum tolerable error limits within which the min-entropy exceeds the number of
bits assigned to each group. I showed that bias can be systematically eliminated under
all conditions by utilizing the symmetries by choosing carefully which outcomes to
discard, and by assigning bit groups of maximal Hamming distance to equiprobable
outcomes. I also provided a general algorithm—valid for any value of m—that realizes
such a bias-free coding function.
III.d) I conducted experiments, and confirmed that the proposed method is

capable of generating high-quality random numbers even with practical limitations:
slight photon rate fluctuations and a continuous measurement clock signal. I overcame
the problem of slow power drifts by tuning τ in software accordingly. I showed that
the error model gives a good description of real-life deviations from uniformity, and
the error magnitude can be kept within the allowed range. I demonstrated that
even with non-idealities, it is possible to fine-tune the settings so the random bits
generated by the new method do not need post-processing for passing all randomness
tests. The generation rate on the given hardware showed a 47.25% increase compared
to the old method.
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