L APPLIED DIGITAL INFORMATION THEORY

|

|-

Table of Content

1. Review of Discrete Probability Theory

2. Shannon’s Measure of Digital lnforrﬁation)

3. Coding a Digital Information Source

Designing Efficient Data Processing Algorithms

5. Coding for Noisy Digital Channel

P

6. Block Coding Principles

==
~

. Tree and Trllis Coding Principles

B =l

Budapest University of Technology and Economics, 2015.

¥

£

£ G GG =0 & - O O & =

/o = =

Chapter O.

REVIEW OF DISCRETE PROBABILITY THEORY

—.-————————-—————_——_————————-——-——_—-

The sample space, S, is the set of possible outcomes of

the random experiment in question. In discrete probability
theory, the sample space is finite [i.e.,'s = {sl, Soreecs sn}]

or at most countably infinite EWhich we will indicate by n=w.]

An event is any subset of S, including the impossible event, 9,
[the empty subset of S] and the certain event, S. An event
occurs when the outcome of the random experiment is a sample

point in that event. The probability measure, P, assigns to

each event a real number [which is the probability of that

event] between O and 1 inclusive such that
s

P(S) =1 ' (1)

and
P(AuB) = P(2a) + P(B) if. AnB = @ . (2)

Notice that (2) implies

P(@) =0

as we see by choosing A = @ and B = S. The atomic events are

the events that contain a single sample point. It follows

from (2) that the numbers
pi = P({Si}) i=1,2,...,0 (3)

[i.e., the probabilities that the probability measure assigns

to the atomic events] complétely determine the probabilities

of all'events.

A discrete random variable is a mapping from the sample

epaco into a specified finite or countably infinite set. For

« B AAWAL P 0 -

2

=

- O 0 GE &N

- 0.2 -

instance, on the sample space S = {sl, sz, s3} we might define

the random variables X, Y and 2 as

s X(s) s Y(s) s Z(s)

s, -5 s, yes sl [1,0]
s, 0 ‘ s, | ves s, | [0/1]
S +5 S5 no S, [l,l]

Note that the range [i.e., the set of possible values of the

random variable] of these random variables are

X(S) = {"5101+5}
Y(S) = {yes, no}
z(s) = {1,0], [0,1], [1,1]}.

The probability distribution (or "frequency distribution")

of a random variable X, denoted,Px, is the mapping from X (S)

into the interval [0,1] such that

Px(x) = P (X=x) . , _ (4)

Here P(X=x) denotes the probability of the event that X takes
on the value x, i.e., the event {s : X(s) = x}, which we
usually write more simply as {X = x}. When X is real-valued,

Px is often called the probability mass function for X. It

follows immediately from (4) that

Px(x) >0 , all xeX(S) ; (5)
and '
z Px(x) =1 (6)
X

where the summation in (6) is understood to be over all x in

X(S) . Equations (5) and (6) are the only mathematical requirements
on a probability distribution, i.e., any function which satisfies
(5) and (6) is the probability distribution for some suitably de-

fined random variable on some suitable sample space.

“x 9 ok

By Tix

- 0.3 -

~ o Q0

In discrete probability theory, there is no mathematical
distinction between a single random variable and a “"random -
vector" (see the random variable Z in the example above.)

However, if Xl, X2, .o XV are random variables on S, it is

& =

often convenient to consider their joint probability distribution 14

defined as the mapping from Xl(S) X XZ(S) X oo X XN(S) into il

the interval [O, l] such that

lexz_..xN(xl,xz,...xN) = P({xfxl}n{gfxz}ﬂ...{ﬁ;xN}). (7) 4

It follows again immediately that]

P (x,,%,,...%X.) 20 (8)]
xlxz...xN 172 N

and -

i i ..i lexz...x\I (xl,xz,..,xN) = 1. (9) -

1l "2 N B

More interestingly, it follows from (7) that

*

- -

I P (X /XnseeeXy,) =P (RyreeeX, 14X, 1seeeX)e(1C
X, 3P S o N NS PR FUTRTUS S Lhbhas T 0 tL EA

LY 2NN

| S

The random variables Xl,Xz,...X are said to be statistically

N

P

indevendent when

i

P (X, ,%X5,0.0.%,) =P (x,)P
xlxz...xN 1772 N Xl 1l

all xléxl(S),x2€X2(S),...xN6XN(S). -

(x,) ...P, (X.) (11)
X2 2 XN N

Suppose that F is a real-valued function whose domain

includes X(S). Then, the expectation of F(X), denoted

E[F{X)] or F(X), is the real number r

elF0] =2 po(x) F(x). (12)

x [
g

| =) L",: =]

s &=

= |

- 0.4 -

Note that the values of X need not be real numbers. The
term average 1is synonymous with expectation. Similarly,
when F is a real-valued function whose domain includes

Xl(S)XXZ(S)X...XN(S), one defines

E[F(Xlllev-cxN)] = z Z ...z PX X '.'X- (x].Ile-l-J%)F(}{]-Ixzf"')%I)'
X, X, Xy 172 N

It is often convenient to consider conditional probability

distributions. If P(X=x) > O, then one defines

P (x,¥)
_Txy
Pyix V1% = 55z - (14)

It follows from (l14) and (10) that

>
Ple(ylx) =0 , all yeY(S) (15)
and
§ pYIX(ylx) = 1. (16)

Thus, mathematically, there is no distinction between a
conditional probability distributiqn.for ¥ (given say a value
of X) and the (unconditioned) probability distribution for Y.
When P(X=x) = O, we cannot of course use (l4) to define
PYIX(ylx). It is often said that PYIX(YIX) is "undefined" in

this case, but it is better to say that P (v|x) can be

Y|Xx
arbitrarily specified, provided that (15) and (l16) are

satisfied by the specification. This latter practice is often
done in information theory to avoid having to treat as special

cases those uninteresting situations where the conditioning

event has zero probability.

a¥d 4D WA 4

(1:

e

P

If F is a real-valued function whose domain includes

X(S), then the conditional expectation of F(X) given the occurrence

of the event A is defined as

E[F(X)|A] = £ P(x)P(X=x|A). (17)
X

Choosing A = {Y=yo}, we see that (17) implies

E[F(x)|y=y] = I F(x)leY(x|yo). (18)
X

More generally, when F is a real-valued function whose domain

includes X(S)xY(S), the definition (17) implies

E[F(X,¥)[a] = £ L F(x,y)P({X=x}n {¥=y}|a). (19)
Xy

Again nothing prevents us from choosing a = {Y=yo} in which case

(19) reduces to

E[F(x,Y)|Y=yO] = F(x,yo)ley(nyo) (20)
X

as follows from the fact that P({X=x}r\{Y=y}|Y=yo) vanishes
for all y except Y=Y, in which case it has the value P(X=x|Y=yo)=
leY(xlyo)a Multiplying (20) by PY(yo) and summing over yo gives

the relation

E[F(x,7)] = £ E[F(X,Y) |¥=y] P (y) (21)
Y

where we have changed the dummy variable of summation from yo
to y for clarity. Similarly, conditioning on an event A, we

would obtain

E[F (x,¥)]|a] = ¢ E[F(X,Y)|{¥=y}nn]P (¥=y|A). (22)
. Y

which in fact reduces to (21) when one chooses. A to be the

(Y Y ¥, S A

[
L
t
L

—

r—

=S

- S

Eﬁ

- 0.6 -

certain event S. Both (21) and (22) are referred to as statements

of the theorem on total expectation, and are exceedingly useful

in the calculation of expectations.

A sequence Yl'Yz’YB"“ of real-valued random variables is .

said to converge in probability to the random variable Y, denoted

Y = plim ¥

N>

N ’
if for every positive € it is true that

lim P(|¥-¥ |<e) = 1.

N-»c0

Roughly speaking, the random variables Yl,Yz,Y3,... converge in
probability to the random variable Y if, for every large N, it

is virtually certain that the random variable YN will take on a

B 15 Rl X

value very close to that of Y. Suppose that xl’XZ'x3"" is a
sequence of statistically independent and identically-distributed
(i.i.d.) real-valued random variables, let m denote their

common expectation, and let

¢ = Xl+X2+...+XN
N N *

Then the weak law of large numbers asserts that

plim YN =m,

N->c0 .

i.e., that this sequence Yl,Yz,Y3,... of random variables converge
in probability to (the constant random variable whose value is
always) m. Roughly speaking, the weak law of large numbers states
that, for every large N, it is virtually certain that

(Xl+x2+...+XN)/N will take on a value very close to m.

T

- 1l.1 -

Chapter 1.

SHANNON'S MEASURE OF DIGITAL INFORMATION

A. Hartley's Measure

In 1948, Claude E. Shannon, then of the Bell Telephone
Laboratories, published one of the most remarkable papers in
the history of engineering. This paper ("The Mathematical

Theor‘iof Communication", Bell System Tech. Journal, Vol. 27,
b

July and October 1948, pp. 379 - 423 and pp. 623 - 656) laid
the groundwork of an entirely new scientific discipline,
"information theory", that enabled engineers for the first

time to deal quantitatively with the elusive concept of

"information".

Perhaps the only precedent of Shannon's work in the

literature is a 1928 paper by R.V.L. Hartley ("Transmission of

Information", Bell Syst. Tech. J., Vol. 3, July 1928, Pp. 535-564).
Hartley very clearly recognized certain essential aspects of
information. Perhaps most importantly, he recognized that re-
ception of a symbol provides information only if there had been
other possibilities for its value besides that which was received.
To say the same thing in more modern terminglogy, a symbol can

glve information only if it is the value of a random variable.

This was a radical idea, which communications engineers were

slow to grésp. Communication systems should be built to transmit

rapdom quantities, not to reproduce Sinusoidal signals.

Hartley then went on to propose a quantitative measure of

information based on the following reasoning. Consider a single

& T

|

b

SR

== 3

- &

[
[
’

- 1.2 -

symbol with D possible values. The information conveyed by n such;
symbols ought to be n times as much as that conveyed by one
symbol, yet there are D" possible values of the n symbols. This
suggests that log(Dn) =n log D is the appropriate measure of
information where "the base selected [for the logarithm] fixes

the size of the unit of information", to use Hartley's own words.

We can therefore express Hartley's measure of the amount
of information provided by the observation of a discrete random

variable X as
I(X) = 1ogb L (la

where
L = number of possible wvalues of X. " (1b

When b = 2 in (la), we shall c;ll Hartley's unit of information

the "bit", although the word "bit" was not used until Shannon's
1948 paper. Thus, when L = 2n, we have I(X) = n bits of information
-- a single binary digit always gives exactly one bit of

information according to Hartley's measure.

Hartley's simple measure of information provides the "right

6 m BN

answer" to many technical problems; If there are eight telephones

in some village, we could give theﬁ each a different three binary

digit telephone number since 000, 001, 0Ol0, Oll, 100, 101, 110

and 111 are the 8 = 23 possible such numbers; thus;.requesting a

telephone number X in that village requires giving the operator

3 bits of information. Similérly, we need to use 16 binary digits
16

to address a particular memory location in a memory with 2 =

65 536 storage locations; thus, the address gives 16 bits of

irnformation.

FPE

Perhaps this is the place to dispel the notion that one bit -
is a small amount of information [even though Hartley's equation
(1) admits no smaller non-zero amount]. There are about 3 x 109'3

231'5 people living in the world today; thus, only 31.5 bits of

e

information suffice to identify any person on the face of the

earth today!

e

To see that there is something "wrong" with Hartley's measure

c

of information, consider the random experiment where X is the il

£

symbol inscribed on a ball drawn "randomly" from a hat that con-

tains some balls inscribed with O and some balls inscribed with 1.

=

Since L = 2, Hartley would say that observation of X gives 1

bit of information whether the hat was that shown in Fig. la or

that shown in Fig. 1lb. But, because for the hat of Fig. 1b we are

rather sure in advance that X = 0O will occur, it seems intuitively

clear that we get less information from observing this X that

we would get had X come from the hat of Fig. la. The weakness of

- B =

Hartley's measure of information is that it ignores the probabilities

J

of the various values of X.

93010 b@%f i

(b)

|

= |

i

Fig. 1

Fig. 1: Two random experiments that'give 1l bit of information -
by Hartley's measure. [

L

Hartley's pioneering work seems to have had very little

Lmg He is much more remembered for his electronic oscillator

than for his measure of information.The only trace of this latter

=

[

¢ J [) =

|

BN 26

contributién lies in the fact that information theorists have
agreed to call Shannon's unit of information "the Hartley" when
the base 10 is used for the logarithms. This is a questionable
honor since no one is likely to use that base and, moreover, it

is inappropriate because Hartley clearly recognized the arbitrari-
ness involved in the choice of the base used with information

measures. Sic transit gloria.

I XY N TERRERS

B. Shannon's Measure

The publication, twenty years after Hartley's paper, of
Shannon's 1948 paper, which proposed a new measure of information,
touched off an explosion of activity in applying Shannon's con-

cepts that continues still today.

Shannon had evidently found something that Hartley had missed

and that was essential to the general application of the theory.

Rather than'stating Shannon's measure at the outset, let us
see how Hartley might with only a small additional effort have
been led to the same measure. Referring again to Hartley's hat
of figure 1lb, we see that there is only one chance in four of
choosing the ball marked "1". Thus choosing this ball is in a
sense equivalent to choosing one out of 4 possibilities and should
thus provide

logz(4) = 2 bits

of information. But there are three chances out of four of choosing
a ball marked "O". Thus choosing such a ball is in a sense equi-
valent to choosing one out of only 4/3 possibilities (whatever 4/3g

<

possibilities might mean!) and thus provides only

log2(4/3) = 0.415 bits

of information. But how do we reconcile these two quite different
numbers? It seems obvious that we should weight them by their

probabilities of occurrence to obtain

N

(2) +

alw

(0.415) = 0.811 bits,

which we could also write as

1 1y_3 <§)= .
n log2 (4) n log2 n 0.811 bits

of information as the amount provided by X. In general, if the

i-th possible value of X has probability P« then the Hartley

information log(l/pi) = = log pi for this wvalue should be weighted
by Py to give

()

- izl Py 109 By (2)

as the amount of information provided by X. This is precisely
Shannon's measure, which we see can in a sense be considered

the "average Hartley information".

There is a slight problem of what to do when pi = 0 for
one or more choices of i. From a practical viewpoint, we would
conclude that, because the corresponding values of X never
occur, they should not contribute to the information provided
by X. Thus, we should be inclined to omit such terms from the

sum in (2). Alternatively, we might use the fact that

lim plogp =0 (3)
prOo+

as a mathematical justification for ignoring terms with p; = 0

in (2). In any case, we have now arrived at the point where we

formally state Shannon's measure of information:

- 5

- - Qe ot
'

==

PRI

1909 Ser

—_ =3

=

- 1.6 -

Definition 1l: The uncertainty (or entropy) of a discrete random

variable X is the quantity

H(X) = - L P_(x) log. P.(x). (4)
x:Px(x)+0 % b "X

The condition below the summation sign in (4) indicates that the

sum is to be taken over all possible values x of X that have non-

el MO @ - -

zero probability. The choice of the base b (which of course must
be kept constant in a given problem) determines the unit of
information. When b = 2, the unit is called the bit (a word
suggested to Shannon by J.W. Tukey as the contraction of "binary
digit" =-- Tukey is better known for his work with fast Fourier
transforms.) When b = e, the only other base commonly used today
in information theory, the unit is called the nat. Because
logz(e)cv 1.443, it follows thét one nat of information equals

about 1.443 bits of information.

In our definition of Shannon's measure, we have not used the
word "information". In fact, we should be careful not to confuse

"information" with "uncertainty". For Shannon, information is

what we receive when uncertainty is reduced. The reason that the

information we receive from observing the value of X equals H(X)

is that H(X) is our a priori uncertainty about the value of X

whereas our a posteriori uncertainty is zero. Shannon is ruthlessly
consistent in defining information in all contexts as the difference

between uncertainties. Besides the physically suggestive name

»rilicim 9

"uncertainty" for H(X), Shannon also used the name "entropy"
because in statistical thermodynamics the formula for entropy is

that of (4). Shannon also borrowed the symbol H from thermodynamics

- 1.7 -

but it would do no harm if we also thought of H as a belated

honor to Hartley.

It should come as no surprise, in light of our discussion
of Hartley's measure, that H(X) can be expressed as an average

or expected value, namely

H(X) = E[- log px(X)] (5)

provided that we adopt the convention (as we do here and hereafter)

that possible values with zero probability are to be ignored in

taking the expectation of a real-valued function of a discrete

random variable, i.e., we define E[F(X)] to, mean

E(F(x)] =] Py (x) F(x). (6)
x:PX(x)+O

Because there is no mathematical distipction between
discrete random variables and discrete random vectors (we might
in fact have X = EY,Z]), it follows that (4) or (5) also defines
the uncertainty of random vectors. The common tradition is to
denote the uncertainty of EY,ZI as H(YZ), however, the notation
H(Y,2) is also in use. We shall always use the former notation

so that, for instance,
H(XY) = E[~ log PXY(X,Y)] (7)
which means

H(XY) = - 1 P, (x,y) log P__(x,y). (8)
x,y:PXY(x,y)+0 XY Xy

Example 1l: Suppose that X has only two possible values Xy and X,

and that Px(xl) = p so that Px(xz) = l-p. Then the uncertainty

of X in bits, provided that 0 < p < 1, is

e =

. rew s @ 100

« o v WP WY

L

Ee=sl

=3

== & W

= =2

- L.5 -

H(X) = - p log2 p - (1-p) log2 (1-p).

Because the expression on the right occurs so often in information

theory, we give it its own name [the binary entrogy,function]

and its own symbol [h(p)]. We also specify that h(0) = h(l).= 0.

S IR

We can write

h(p) = - p log, p - (1-p) log, (1-p) . Ospsl (9)

provided that we adopt the convention that

p log p =20 when p = 0 i (10)
as we shall do hereafter.

The graph of h(p) is given in Fig. 2, as well as a table

of useful numbers.

ks WO VE @

Notice that, with our convention (10), we can rewrite (4)

and (8) in the more convenient forms

H(X) Px(x) log Px(x) (F')

H(XY)

-1
X
- }Z{ }Z, Pyy (X,¥) log Py (x,y). (8")

Hereafter, we shall almost always use either these simpler forms

or the expected value forms (5) and (7) when writing uncertainties.

- 1.9 - I
h(p) I
T e T i
‘ h(p) = h(l-p) -
3 L ! : |
4 \
l e |
l 1
‘ -
\ ‘ _
500 bk —==f - - - - - - - _ _ _ _ _ __ o |
! | i
i
i | ! .
' ' ']
1 ‘ ' I
= e I
4 I : I
| '
i ! |
! I .
| | | l’:
l] [l " \ p
-110 L 1/2 3 .890 1 [
4 4
p |-p log, p | -(1-p) log,(l-p) | h(p) (bits) I
o) o] o) o)
.05 .216 .070 .286
10 ,232 .137 .469
11 .350 .150 .500 'ﬁ
.15 L4111 .199 .610 }
20 .464 .258 .722 J
.25 . 500 .311 .811 i
.30 .521 .360 .881 ‘N
173 .528 .390 .918
<35 .530 .404 .934 ’“
ﬂ40 0529 l442 .971 L3
45 .518 .474 .993 ; -
.50 1/2 1/2 1 S
Fig. 2: The binary entropy function h(p).

Lo

U

]

e

==

- O O =

B 8

d

- 1l.10 -

C. Some Fundamental Inequalities and an Identity

The.following simple inequality is so often useful in
information theory that we shall call it the "Information

Theory (IT) Inequality":

IT-Inequality: For a positive real number r,

log r £ (r-1l) log e
with equality if and only if r = 1.

Proof: The graphs of ln r and of r-1 coincide at r = 1 as

shown in Fig. 3. But

>1 forr <1
& (np =3
<1 forr > 1

so the graphs can néver cross.'Thus 1ln r § r-1 with equality
if and only if r = 1. Multiplying both sides of this inequality

by log e and noting that log r = (ln r) (log e) then gives (1l1l).

B l//4 N~ 1ln r

Fig. 3: The graphs used to prove the IT-inequality.

o) Qed o8

(11

- 1.11 -

We are now ready to prove our first major result which
shows that Shannon's measure of information coincides with
Hartleys's measure when and only when the possible values of X
are all equally likely. It also shows the intuitively pleasing
facts that the uncertainty of X is greatest when its values are

equally likely and is least when one of its values has probabi-

lity 1.

Theorem 1: If the discrete random variable X has L possible

values, then
O £ H(X) € log L (12)

with equality on the left if and only if Px(x) = 1 for some x,

and with equality on the right if and only if Px(x) = 1/L for
all x.

4

Proof: To prove the left inequality in (12), we note that

=0 if PX(X) = 0 or Px(x) =1
- Px(x) log PX(X)
> 0 if 0 <« Px(x) <1,

Thus, we see immediately from (4) that H(X) = 0 if and only if
Px(x) equals either O or 1 for every x. But Px(x) equals either

O or 1 for every x if and only if Px(x) = 1 for exactly one

value x.

To prove the inequality on the right in (12), we use a
common "trick" in information theory, namely we first write
the quantity that we hope to prove is less than or'equal to zero,
then manipulate it into a form where we can apply the IT-
'inquAlity.

We first consider the case where all L values of X have

non-zero probability. Then

k

- G

Ak w-

S j

==

|

= ==

L

e &uJ

J

- 1.12 -

-} P(x) log P(x) - log L
X

P (x) [log _P}m - log L]

H(X) - log L

%~ X

_ 1
= P(x) log 1P (%)
(IT -inequality) < P(x)'[ig%;T - l] log e =

1 X~

Z % - Z P(X)J log e
-X

= (1-1) log e =0

where equality holds, by the IT-inequality, if and only if

1
LP(x)

P(x) * O for all x. But suppose there are only L' values x of X

= 1, all x. This proves the right inequality in (12) when

such that P(x) # O and that L' < L. Then we can in an obvious
way define a new random variable X' with only L' possible

values, all of non-zero probability, such that H(X') = H(X).

But H(X') € log L' < log L, so the right inequality in (12) holds

with strict inequality whenever P(x) = O for one or more values x.

In the above proof, we have begun to drop the subscripts

from probability distributions, but only when the subscript is

the capitalized version of the argument. Thus, we will often

write simply P(x) or P(x,y) for Px(x) or PXY(x,y), respectively,

but we would never write P(0) for PX(O) or write P(xl) for Px(xl).

This convention will greatly simplify our notation with no loss

of precision.

Very often we shall be interested in the behavior of one

random variable when another random variable is specified. The

following definition is the natural generalization of uncertainty

to this situation.

[SV

Definition 2: The conditional uncertainty (or conditional entropy)

of the discrete random variable X, given that the event Y =y

occurs, is the quantity

H(X|Y=y) = - P(x|y)logP(x]|y). (13)
x:P(x|y)$0

We note that (13) can also be written as a conditional

expectation, namely

H(X|Y=y) = E[-log ley(X|Y) iy=y]. (14)

To see this, recall that the conditional expectation, given
Y=y, of a real-valued function F(X,Y) of the discrete random

variables X and Y is defined as

E[F(X,¥)|y=y] = J P(x]y)F(x,y). (15)
x:P(x|y)+$0

Notice further that (6), (15) and tHe fact that P(x,y) = P(x|y)P(y)
imply that the unconditional expectation of F(X,Y) can be

calculated as

EfF(x,1)] = } P(y)E[F(X,Y) |¥=y]. (16)
y:P(y)$0

We shall soon have use for (16).

From the mathematical similarity between the definitions

(4) and (13) of H(X) and H(X|Y=y), respectively, we can immediately

deduce the following result.

Corollary to Theorem l: If the discrete random variable X has L

possible values, then
0 < H(X|Y=y) € log L (17)

with eguality on the left if and only if P(x]y) =1 fbr some X,

‘and with equality on the right if and only if P(x]y) = 1/L for

i -

e x9Qs .

|

E:::

=

-1.14 -

L4

all x. [Note that y is a fixed value of Y in this corollary.]

When we speak about the "uncertainty of X given YY", we
shall mean the conditional uncertainty of X given the event

Y

y, averaged over the possible values y of Y.

Definition 3: The conditional uncertainty (or conditional entropy)

of the discrete random variable X given the discrete random

variable Y is the quantity

H(xly) = 1 P(y)H(X|Y=y). (18
y:P(y)+0

We now note, by comparing (14) and (18) to (16), that we can

also write

H(x|Yy) = E[~ log PXIY(XlY)] (19
which means
Hxly) = -1 P(x,y) log P(xly). (20
x,y:P(x,y)#O

For theoretical purposes, we shall find (19) most useful. However,
(13) and (18) often provide the most convenient way to calculate

H(X|Y).

We now prove our second main result that again has an in-
tuitively pleasing interpretation, namely that knowing Y reduces,

in general, our uncertainty about X.

Theorem 2: For any two discrete random variables X and Y,

H(X]Y) € H(X) (él

£

with equality if and only if X and Y are statistically independenﬁ.

Proof: From (4) and (19), we have

T L.elD =
H(X|Y) - H(X) = E [~ log leY(xly)J - E[- log P (x)] -
= E [log P (X) - log ple(XIY)] ’
P, (X) §
= E [log §—§—T§T§TJ ‘n
X|y A ¥
P, (X)P,(Y) -
X Y
= E | log]
[Py (XY) L
= 3 P(x,y) log ZX1ELy) 1
X,y:P(x,y)=0 P(x,y) L4
. . P(x)P(y) _ 1
(IT-inequality) g) P(x,y) B) -l{log e = P
X,¥:P(x,y)$0 Xe¥ "
=[1 P(x)P(y) - 1} log e 1
%,y:P(x,y)$0 B

T/

i) P(x)P(y) - l] log e =
XY

= [Te) I2y) - 1] 1og e = o.
B ¥

The first of these inequalities holds with equality if and only

if P(x,y) = P(x)P(y) whenever P(x,y)%o; but this latter condition

[
I
b

is equivalent to the condition thaf P(X,y) = P(X)P(y) for all

X and y, which is the definition of statistical independence.

J

When X and Y are statistically independent, then P(x)P(y) = O
whenever P(x,y) = O so the second of these inequalities holds i
. LU
also with equality. This proves the theorem. 5
Notice that it follows from Theorems 1 and 2 that, when X -

has L possible values,
H{X|Y) € log L (22) M

with equality if and only if both X and Y are statistically

independent and P(x) = 1/L for all x. It follows trivially from

(17) -and (18) that _

H(X]Y) 30 (23) N

==

c=n

a C B

]

=

Esg

5|

with equality if and only if for every y such that P(y) # 0O
there is an x such that P(x|y) = 1. We could state this result
as saying that "equality holds in (23) when and only when the

value of Y essentially determines the value of X," which again

is an intuitively satisfying result.

4 gy .

We can again profit from our observation that there is no
mathematical distinction between discrete random variables and
discrete random vectors to note that, in our definitions of
H(X|Y=y) and H(X|Y), nothing prevents either X or Y, or both
X and Y, from being random vectors. For instance, it follows

from (19) that the uncertainty of X given the random vector

EY,Z] is

H(X|Yz) = E[- log PXIYZ(XIYZ)] (24

which means

H(x|¥2)

) , P(x,y,2)log P(x|yz). (25
X,¥,2:P(x,y,2)30

In light of Theorem 2, it is natural to expect an inequality
between H(X|YZ) and H(X|Y). To get at this inequality in the
easiest way, we introduce the last of our uncertainty definitions,

which is entirely analogous to (14).

Definition 4: The conditional uncertainty (or conditional entropy)s
e

of the discrete random variable X given the discrete random variabie

Y and given that the event Z = z occurs is the quantity 4 f
H(X|Y,2 = 2) =E[- log Pylyz X1¥D) 2 = 2]. (26)

Equivalently, we have

Hxly,z2 = z) = =J P(x,ylz)log P(x]|y,z). (27)
x,y:P(x,yle:O

We now observe that (20) and (27) differ only in the fact
that the probability distributions in the latter are further
conditioned on the event Z = z. Thus, because of this mathematical

similarity, we can immediately state the fallowing result.

Corollary 1 to Theorem 2: For any three discrete random variables

X, ¥ and Z,
H(X|Y,2=2) € H(X|2=2) (28)

with equality if and only if P(x,ylz) = P(x|z) P(y|lz) for all

X and y. [Note that z is a fixed value of Z in this corollary.]

We notice next that (24) and (26), because of (16), imply

that

H(xlvz) = § P(z) H(x|Y,z=2). (29)
z:P(z)%O

It thus follows upon multiplying both sides of (28) by P(z) and
summing over all z such that P(2)4+0, that we obtain the following

important result, which is the last of our inequalities relating

various uncertainties.

torollary 2 to Theorem 2: For any three discrete random variables

X,Y¥ and Z,
H(X|YZ) ¢ H(X]|Y) (30)

with equality if and only if for every z such that P(z)+§0

the relation P(x,y|z) = P(x[2)P(y|z) holds for all x and y.

We- can summarize Theorem 2 and its second corollary by

saying that conditioning on random variables can only decrease
uncertainty (more precisely, can never increase uncertainty.)
This is again an intuitively pPleasing property of Shannon's

measure of information. The reader should note, however, that

-ﬁﬁﬁ.“_ =

[
|
L

I
)
0

E=m

- 1.18 -

conditioning on an event can increase uncertainty, i.e.,

H(X|Y=y) can exceed H(X). It is only the average of H(X|Y=y)
over all values y of Y, namely H(X|Y), that cannot exceed H(X).
That this state of affairs is not counter to the intuitive
notion of "uncertainty" can be seen by ‘the following reasoning.

Suppose that X is the color (yellow, white or black) of a

"randomly selected" earth-dweller and that Y is his nationality.

"On the average", telling us Y would reduce our "uncertainty"
about}<[H(X|Y) < H(X)]. However, because there are many more
earth-dwellers who are yellow than are black or white, our "un-
certainty" about X would be increased if we wére told that the
person selected came from a nation y in which the numbers of
vellow, white and black citizens were.all roughly equal

[H(x|Y=y) > H(X) in this case.|’ See also Example 2 below.

We conclude this section, which has been devoted primarily
to inequalities, by deriving one of the most useful identities
in information theory. Let [Xl'X2'°"Xﬁ] be a discrete random
vector with N component discrete random variables. Because
discrete random vectors are also discrete random variables, (5)

gives

H(X;X,...X) = E[-log lexz...xN(xl’Xz""xN)]'

(31)

which can be rewritten via the multiplication rule for probability

distributions as

H(X,X,...X) = E[- log{le(Xl)-P (X,]%)) -

lexl

«eoP
Xl Xy oo e Xy (X %y0enXy 1)}

"
r

(32)

’

T LeLiT

We write (32) more compactly as

H(XlXZ"'XN)

In less compact, but more easily read,

this last expansion

N
E(~log T b, . (X 1%, ...)]
=1 xnlxl...xn_1 n'"1 1

N

z E[—log PX IX ...X (anxl'..'xﬂ-l)]
n=1 n 1l n-1

N
nzl H(xnlxl...xn_l).

as

notation, we can rewrite

H(X X,. 0 X)) = H(X)) + H(X, X)) +...+ H(lexl...xN_l). (33)

This identity can be phrased as stating that "the uncertainty

of a random vector equals the uncertainty of its first component,

plus. the uncertainty of its second component when the first is

known, ..., plus the uncertainty of its last component when all

previous components are known." This is such an intuitively

pleasing property that it tempts one to conclude, before we have

made a single application of the theory, that Shannon's measure

of information is the correct one.

It should be clear from our derivation of (33) that the

order of the components is arbitrary. Thus, we can expand for

instance H(XYZ) in any of the six following ways:

H(XYZ) H(X) +

H(X) +

H(Y) +

H(Y) +

H(Z) +

= H(Z) +

H(Y|X)
H(Z|X)
H(X|Y)
H(Z|Y)
H(X|2)

H(Y|2)

+

H(Z|XY)
H(Y|XZ)
H(Z|XY)
H(X|YZ)
H(Y|XZ)

H(X|Y2).

E‘.-.'

=3

_]

G

= - aGE - - O o

J L K

L*

R =

- 1.20 -~

Example 2: Suppose that the random vector [X,Y,Z] is equally

likely to take on any of the following four values: [0,0,0], BD,l,d

[1,0,0] and [1,0,1]. Then P (0) = P,(1) = 1/2 so that
H(X) = h(1/2) = 1 bit.

Note that P (0|1) = 1 so that

Y| X

H(Y|X = 1) = o.

However,

(0lo) = L so that

Py|x 2
H(Y|X = 0) =.h(1/2) = 1 bit.
Using (18) now gives
=1 =1
H(Y|X) = 5 (1) = 3 bit.

From the facts that P(z|xy) equals 1, 1 and l/2 for (x,y,2)

B

LA 24

equal to (0,0,0), (0,1,0) and ¢(1,0,0), respectively, it follows

that
H(Z|[x =0, Y =0) =0
H(Z|X =0, Y=1) =0
H(Z|X =1, ¥ = 0) = 1 bit.

Upon noting that P(x,y) equals %, % and % for (x,y) equal to

(0,0), (0,1) and (1,0), respectively, we find from (18) that

H(z|XY) = %(0) + %(0) + %(1) = 1/2 bit.

We now use (33)to obtain
1 1 .
H(XYZ) =1 + 3 + 3= 2 bits.

Alternatively, we could have found H(XYZ) by noting that [X,Y,Zl

is equally likely to take on any of 4 values so that

H(XYZ2) = log24 = 2 bits.

- 1.21 -

Notice that PY(l) = 1/4 so that
H(Y) = h(l/4) = .81l bits.
Thus, we see that
H(Y|X) = 2 < H(Y) = .81l
in agreement with Theorem 1. Note, however,, that

H(Y|X =0) =1 > H(Y) = .811.

We leave as excercises showing that conditional uncertainties

can also be expanded analogously to (33), i.e.,
H(XlXZ...XNlY =y) = H(XllY =y) + H(lexl,y = y)
.. H(XNIXl...XN_i,Y =y) (34)
H(Xlxz...XNIY) = H(XlIY) + H(X%IXlY)

oo HIXGIR coaxg 0 Y) (35)

and finally
H(X,X,...x |¥,2 = 2) = H(XllY,Z = z) + H(XZJXI,Y,Z = z)
+o..t H(XNIXl...XN_llY,Z = z). (36)

Again, we emphasize that the order of the component random
variables Xl’xz""'XN appearing in the expansions (34) - (36) is
entirely arbitrary. Each of these conditional uncertainties can
be expanded in N! ways, corresponding to the N! different

orderings of these random variables.

D. Mutual Information

W2 have already mentioned that uncertainty is the basic
1tity in Shannon's information theory and that, for Shannon,

"information" is always a difference of uncertainties. How much

ki

T WY AEg
=33

=

e o

E-"_' i

e

- 1.22 -

information does the random variable Y give about the random
variable X? Shannon's answer would be "the amount by which Y

reduces the uncertainty about X", namely H(X) - H(X|Y).

Definition 5: The mutual information between the discrete random

variables X and Y is the gquantity

I(X;Y) = H(X) - H(X|Y).

The reader may well wonder why we use the term "mutual
information" rather than "information provided by Y about X"

for I(X;Y). To see the reason for this,

can expand H(XY) in two ways, namely

H(X) + H(Y|X)
H(Y) + H(X|Y)

H (XY)

from which it follows that

H(X) - H(X|Y) = H(Y) - H(¥[|X),
or, equivalently, that

I(X;Y) = I(Y;X).

Thus, we see that X cannot avoid giving the same amount of
information about Y as Y gives about X. The relationship is

entirely symmetrical. The giving of information is indeed "mutual®

Example 3: (Continuation of Example 2) .Recall that PY(l) = 1/4

so that

H(Y) = h(1/4) = .811 bits.
Thus,

I(X;Y) = H(Y) - H(Y|X)

= .81l - .,500 = .31l bits.

In words, the first component of the random vector EX,Y,Z] gives

.311 bits of information about the second component,

versa.

we first note that we

and vice

(37.

(38)

B X XN

= Ll.43 =

It is interesting to note that Shannon in 1948 used neither
the term "mutual information" nor a special symbol to denote it,

but rather always used differences of uncertainties.
"mutual information" (or "average mutual information" as it is
often called) and the symbol I(X;Y) were introduced later by Fano.

We find it convenient to follow Fano's lead, but we should never

lose sight of Shannon's concept that information is nothing but

a change in uncertainty.

The following two definitions should now seem natural.

Definition 6: The conditional mutual information between the

discrete random variables X and Y, given that the event 2 = gz

occurs, is the quantity

I(X;Y|2=2) = H(x|z=2) - H(x|Y,2=2). (39)
Definition 7: The conditional mutual information between the
discrete random variables X and Y given the discrete random
variable 2 is the quantity

1(x;¥l2) = u(x]z) - H(X|Y2). (40)

From (18) and (29), it follows that

I(X;Y|2) = ¥ P(2)I(X;Y]|2=2). (41)

z:P(z)$0
From the fact that H(XY|Z=z) and H(XY|2) can each be expanded

in two ways, namely

H(XY|2=2) = H(X|2=2) + H(Y|X,2=2)
= H(Y|2=2) + H(X|Y,Z2z=2)
and
H(XY|2) = H(X|2) + H(Y|X2)

H(Y|2) + H(X]|YZ),

The terminology

o vaoxton-sr

~e

l“. =j

- R &=

|

5=y

=23

‘)

- 1.24 -

it follows from the definitions (39) and (40) that

I(X;Y|2=2) = I(Y;x]|2=2) (42

and
I(X;Y|2) = 1(Y;X]|2). (43

We consider next the fundamental inequalities satisfied by
mutual information. Definition (37), because of (21) and (23),

immediately implies the following result.

Theorem 3: For any two discrete random variables X and Y,

O € I(X;¥) € min [H(X),H(¥)] ' Y

with equality on the left if and only if X and Y are statisticall

independent, and with equality on the right if and only if either

orwtBarne 4‘\‘<

Y essentially determines X or X essentially determines Y or both.
Similarly, definitions (39) and (41) lead to the inequalities

O ¢ I(X;¥|z=2) ¢ min [H(X|2=2),H(Y|2=2)] (45
and

O ¢ I(X;¥]2) ¢ min [H(X{2),H(¥|2)], (46

respectively. We leave it to the reader to state the conditions

for equality in the inequalities (45) and (46).

We end this section with a caution. Because conditioning

LN T YT TP

reduces uncertainty, one is tempted to guess that the following

inequality should hold:
I(X;Y]2) € 1(X;Y).

This, however, is not true in general. That this does not contra-
dict good intuition can be seen by supposing that X is the

plaintext message in a secrecy system, Y is the encrypted message,

and 2 is the secret key.

- 1.25 -

Suggested Readings

N. Abramson, Information Theory and Coding. New York: McGraw-Hill, 1963.
[This is a highly readable, yet precise, introductory text book on information
theory. It demands no sophisticated mathematics.]

R. G. Gallager, Information Theory and Reliable Communication. New York:
Wiley, 1968. [This is by far the best book on information theory, but it is
written at an advanced level.]

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.
Urbana, I1l., Illini Press, 1949. [This inexpensive little paperback book
contains the reprint of Shannon's original 1948 article in the Bell Svystem
Technical Journal. The appearance of this article was the birth of
information theory. Shannon's article is lucidly written and should be read
by anyone with an interest in information theory.]

Rey Papers in the Cevelopment of Information Theory

(Ed. D. Slepian). New York: IEEE Press, 1973. Availahle with cloth or
paperback cover.[This is a collection of many of the most important papers
on information theory, including Shannon's 1948 paper and several of
Shannon's later papers.]

R. J. McEliece, The Theory of Information and Coding.
(Encyclopedia of Mathematics and Its Applications, vol. 3,
Sec. Probability.) Reading, Mass.: Addison-Wesley, 1977.
[This is an up-to-date and readable small book containing
many recent results in information theory.]

== 55

Sy

!

= e W

= 22 B3

L

| L] ! :

&

D N @B &

- 2.1 -

Chapter 2

CODING A DIGITAL INFORMATION SOURCE

Introduction

In the preceeding chapter, we introduced Shannon's
measure of information and showed that it possessed several
intuitively pleasing properties. However, we have not yet
shown that it is the "correct" measure of information. To ‘
do that, we must show that the answers to practical problems
of information transmittal or storage can be expressed simply
in terms of Shannon's measure. In this chapter, we show
that Shannon's measure does exactly this for the problem of
coding a digital information source into a sequence of letters
from a given alphabet. We shall also develop some efficient

methods for performing such a coding.

At the outset, we consider the following conceptual

situation:

B. Prefix-Free Codes and the Kraft Inequality

At the outset, we consider the conceptual situation shown

in Fig. 1 wherein:

Message U Source -
g > 2 =[x%,...%)]
Source Encoder

Fig. 1l: A Variable-Length Coding Scheme

(1) U is a random variable with alphabet {ul,uz,...uK}.

(2) Each Xi takes on letters in a D-ary alphabet, which we will

usually take to be {0O,1,...,D-1}.

3.2 SAMRer n

(3) W is a random variable, i.e., the wvalues of the random variabl

2 are D-ary sequences of varying length.

We take the smallness of EENI, the average codeword length,

as the measure of goodness of the coding scheme. If z, =

Ex. X,,.--X,] is the codeword for u, and w, is the length of
il 7i2 iw, i i

this codeword, then we can write the average codeword length as

I ~1R

Elw] = w, Po(u,) (1)

i=1
ince we can think of W as a real-valued function of the random

variable U, Note that Xl,XZ,...XW are in general only conditionally

defined random variables since Xi takes on a value only when W > i.

We place the following two requirements on the type of coding
schemes for U that we wish to consider:

(1) No two codewords can be the same, i.e. zi + zj for
i # j. This requirement assures that H(U) = H(Z).

(2) No codeword is the prefix of a longer codeword. This
assures that a codeword can be recognized as soon as its last
digit is received, even when the source encoder is used repeatedly

to code a succession of messages from the source.

A code for U which satisfies (1) and (2) is called a prefix-free

code (or an instantaneously decodable code.) Notice that, if one

uses the convention that a sequence is a prefix of itself, we
could-state (l) and (2) together as the condition that no codeword

be the prefix of another codeword.

Example 1:
U Z
U
u, - 10 This is a prefix-free code .
Y1
L A 4
Y1
u. 60 This is not a prefix-free code since z. is

. 1
Sq o 11 a prefix of 23.

8

—

|

SRS

EE G0 - O OO 2=

=

..2.3_

To gain insight into the nature of a prefix-free code, it
is useful to show the digits in the codewords of some code as
the labels on the branches of a rooted tree. In Fig. 2, we show
the "binary trees" corresponding to the two binary codes of
Example 1. Note that the codewords (shown by the large dark
circles at the end of the branch labelled with the last diéit
of the codewofd) of the prefix-free code all correspond to
terminal nodes in its tree, but that ﬁhe non-prefix code also

has a codeword corresponding to a non-terminal (or "intermediate")

node.
0
= uy ¢
The binary tree of the binary
prefix-free code of
I 0
= — Example 1.
2
1
e
1 8 u,
O
0 Y2
The binary tree of the binary
1 ;

non-prefix-free code of

Example 1.

C

Fig. 2: The trees of two binary codes.

To make our considerations more precise, we introduce some

definitions.

DEF: A D-ary tree is a rooted tree such that either D branches or

no branches stem outward (i.e., away from the root) from each node.
We shall label the D branches stemming outward from a node

with the D different D-ary letters, 0,1,...,D-1.

re. -

DEF: The full D-ary tree of length N is the D-ary tree whose

terminal nodes are the DN nodes at depth N from the root.

See Figure 3 for examples of D-ary trees.

Examples:

A binary tree The full ternary tree of length 2

Fig. 3: Examples of D-ary trees.

It should now be self-evident tﬁat every D-ary prefix-free code

can be identified with a set of terminal nodes in a D-ary tree, and

that, conversely, any set of terminal nodes in a D-ary tree defines

a D-ary prefix-free code. [Hereafter, we show in our D-ary trees

those terminal nodes used as codewords as darkened circles and those

not used as codewords as hollow circles.] We make the D-ary tree for

a given prefix-free code unique by pruning at every node from which

no codewords stem.

Example 2:The prefix Eree.codg z, =[011] z, =[1QJ z4 =[il]and 2, =[OOJhas

z
the tree 0 | 9 8
1 ——)
; 1-_1-—-‘21
0
1 —92,

&N W

The following result tells us exactly when a given set of

codeword lengths can be realized by a D-ary prefix-free code.

The Kraft Inequality: There exists a D-ary prefix-free code whose

codeword lengths are the positive integers WitWor oW if and only

K

if

l—

K
! o tg 1. (2)

Proof: We shall use the fact that, in the full D-ary tree of

length N, DN-w terminal nodes stem from each node at depth w

== =

where w < N.

Suppose first that there does exist a D—ary prefix-free code

whose codeword lengths are w,,w,,...w,. Let N = max w, and consider

K. l
constructing the graph for the code by pruning the full D-ary tree :

==

of length N. Beginning with i = 1, we find the node z; in this 3

—

tree and, if W, < N, we prune the tree there to make it a terminal
. N-w,
node at depth W By this process, we delete D * terminal nodes

]

from the full tree as possibilities for other codewords, since none

=

of these nodes could be stemming outward from a different codeword

because of the prefix-free condition. Since there are only DN

o

terminal nodes that can be deleted, we must find, after all codeword:
- have been considered, that

N-w N-w N-w
) D 1 + D 2 + ... + D K < DN.

Dividing by DN gives the inequality (2) as a required condition for

a prefix-free code.

-

Suppose, conversely, that wl,wz,...w are positive integers

K
such that (2) is satisfied. Without loss of generality, we may

assume that we have ordered these lengths'so that wl NS w2 S ...
S wK. Consider then the following algorithm: (Let N = mix wi and
start with the full D-ary tree of length N.)

(1) i+«1,

(2) Choose z, as any surviving node at depth W, (not yet

used as a codeword) and, if W, < N, prune the tree at z, . Stop if

there is no such surviving node.

(3) If 1 = K, stop. Otherwise, i « i + 1 and go to step (2)

If we are able to choose zK in step (2), then we will have

constructed a prefix-free D-ary code with the given codeword length

We now show that we can indeed choose z, in step (2) for all i < K.

Suppose that zl,zz,...zi_l have been chosen. The number of sur-

viving nodes at depth N not stemming from any codeword is
N-w N-w N-Q. i=-l -w,
D' - > Laip 24 ... 4p =y oY -3 9y,
Thus, ‘if 1 < K, condition (2) shows that the number of surviving

nodes -at depth N is greater than zero. But if there are surviving

nodes .at depth N, then there must also be (unused) surviving nodes

at depth w, < N. Since w S W, & e & W, $§ W,, no already
i 1 2 i-1 i
chosen codeword can stem outward from such a surviving node and

hence it may be chosen as z; Thus condition (2) suffices for the

construction of a D-ary prefix-free code with the given codeword

lengths.

Note that our proof of the Kraft inequality actually con-

tained an algorithm for constructing a D-ary prefix-free code

given the codeword lengths,

wl,wz,...wK whenever such a code exists,

i.e. whenevar (2) is satisfied. There is no need, however, to start

=t f4 b

[
I

= = W

eSS

= W GE G a8

= =

from the full-tree of length max w. since the algorithm given in
i

the proof is fully equivalent to growing the tree from the root

and selecting any node at depth W, for the codeword z, provided

that the codewords with smaller length are chosen sooner.

Example 3:Construct a binary prefix—-free code with lengths w, = 2, w2 = 2,
w3=2,w4=3,w5=4.
5 -w :
. i 1 1 1 1 1 15
Since iZ]_ 2 =2 + 7 + A + 3 + 1€ ~ 16 < 1, we know such a prefix-free

code exists. We "grow" such a code to obtain
0

o U
0 | 1 U z
1
| s % uy 00
L ; . u,y 01
’ (—— 3 ug 10
= 0 % w, | 110
L, u | 1110
Example 4:Construct a binary prefix-free code with lengths w, = 1, w, = 2,
w3=2,w4=3,w5=4.
S Y4 Tl le i Lsgs 19
Since 121 D =3 +-Z +-Z +-§ +-I€ =16 > 1, the Kraft inequality shows

that no such code exists!
Example 5:Construct a ternary prefix-free code with codeword lengths w, = 1,

4.

= 3 and w

v 4 5

=2, w, =2, w

2 3

5 -w
11,11
Since .Z D T=3+5tFH

i=1

= %—% & 1, we know such a prefix-free

.

27 t

|+
=

code exists. We "grow" such a code to obtain
0

e ul U r Z
0_gt2 Uy 0
i1 v 10
L 4 —e 3 u u
""[t 5 —20 40 ug u2 11
2 1 ‘——.Ln 3
| 2 5, | 2 u, 120
beree—p Ug 1210

L K

The reader should reflect on the fact that we have yet to)
concern ourselves with the probabilities of the codewords in the
prefix-free codes that we have constructed, although our ultimate
goal is to code U so as to minimize E(W]. From (1), it is obvious -
that we should assign the shorter codewords to the more probable 1
values of U. But how do we know what codeword lengths to use? And
what is the smallest E[W] that we can achieve? We shall return to

these questions shortly, but first we shall look more carefully M

E:

into the information-theoretic aspects of rooted trees.

)

C. Rooted Trees with Probabilities -- Path Length and Uncertainty

By a rooted tree with probabilities we shall mean a finite

rooted tree with nonnegative numbers‘ (probabilities) assigned

= =

to each node such that (1) the root node is assigned probability 1,
and (2) the probability of every intermediate node (including

the root) is the sum of the probabilities of the nodes at

Sredr ol rea v
-

J

depth 1 in the subtree stemming from this intermediate node).

E; =y B

Note that we do not require the tree to be "D-ary", i.e., to

ez

have the same number of branches stemming from all intermediate

nodes. i

Example 6: l“—_—”'l This is a rooted tree with
j 02 Probabilities, but it is

neither a ternary tree nor

o

a binary tree.

=

Notice that, in a rooted tree with probabilities, the sum of

the probabilities of the terminal nodes must be 1.

s 68

J

- 2.9 -

DY TP

Path Length Lemma:

In a rooted tree with pProbabilities, the

average depth of the terminal nodes equals the sum of the

probabilities of the intermediate nodes (including the root).

Proof: The probability of each intermediate node equals the
sum of the probabilities of the terminal nodes in the subtree

stemming from that intermediate node. But a terminal node at

depth d is in the d such subtrees corresponding to the d inter-

mediate nodes on the path from the root to that terminal node.

- Qe

Thus, the sum of the pProbabilities of the intermediate nodes
equals the sum of the Products of each terminal node's probability

and its depth, but this latter sum is just the average depth

of the terminal nodes,

In the preceeding example, the average depth of the terminal
nodes is 1 + ,7 = 1.7 by the Path Length Lemma. As a check,note

that 1(.1) + 1(.2) + 2(.3) + 2(.4) =1.7.

We now consider the various uncertainties that can naturally

- AR 8 g

be defined for a rooted tree with probabilities. We can think of

-

the probability of each node as the probability that we would reach

that node in a random Jjourney through the tree starting at the root

node and ending on some terminal node. Then, given that one is at

a specified intermediate node, the conditional probability of
choosing each outgoing branch as the next leg of the journey is
just the probability on the node at the end of that branch divided

by the probability of the node at its beginning (i.e., of this

intermediate node itself). For instance, in Example 6, the probabilat

.3 and .4, giveni

that one is at the intermediate node with probability .7, is 3/7 and

of moving to the terminal nodes with probabilities

4/7, respectively.

|
[\

.10 -

Suppose that the rooted tree has T terminal nodes whose
probabilities are pl,pz,...,pT. Then we define the terminal

uncertainty of the rooted tree as the quantity

He = = 1 p;, log p;- (3)
1:p.$0

1
Notice that H; can be considered as the uncertainty H(U) of a

random variable U whose value specifies the terminal node reached

in the random journey described above.

Suppose that the rooted tree has N intermediate or "non~
terminal" nodes (including the root) whose probabilities are
Pl'PZ""’PN' [Recall from the Patp Length Lemma that P1+P2+...+PN

equals the average length, in branches, of the random journey

described above.] We now wish to define the branching uncertainty

at each of these intermediate nodes so that it equals the uncertainty
of a random variable that specifies the branch followed out of

that node, given that we had reached that node on our random journey.
Suppose that qil'qiz""'qiL. are the probabilities of the nodes
(some of which may be interm;diate nodes and some terminal nodes)

at the ends of the Li branches stemming outward from the inter-
mediate node whose probability is Pi' Then the branching uncertainty,

H., at this intermediate node is
q, - q, -
g, == 1 3 109 4 (4)

.. P, P, '
J.qij$0 i i

because qij/Pi is the conditional probability of choosing the j-th
of thesg branches as the next leg on our journey given that we

ave at this intermediate node.

Example 7: Suppose that the T=4 terminal nodes and the N=2 non-

“eoninal nodes for the rooted tree of Example 6 have been numbered

e 5 3

= =

|7

.l

I

Gl & &

=

RS

= =

| o e

J

- 2.11 -

such that pl=.l, p2=.2, p3=.3, p4=.4, Pl=l, P2=.7
Then
4
Ho = - _z P, log P, = 1.846 bits.
i=1
We see that Ll=3 and qll='l' q12=.2, ql3=.7.
Thus
H, =-.1 log.l - .2 1log.2 - .7 log.7 = 1.157 bits.

1

Finally, we see that L2=2 and q21=.3 and q22=.4. Thus

4 _
7 = hi

o}

il

|
3w
~Njw
|
3| >
W

log log) = .985 bits.

Because of part (2) of the definition of a rooted tree

with probabilities, we see that

L, |
zl
P, = q. . - (5)
o= : :
q; 4
Using (5) together with log —Pl = log q;4 - log B, in (4), we
i
obtain for the product Pi Hi
P, H, = -) qy5 log qg; + P; log Pj. (6)

.. ij
J.qij$0
We shall make use of (6) to prove the following fundamental result.

-

Theorem l: The terminal uncertainty of a rooted tree with probab-

ilities equals the sum over all non-terminal nodes (including the
root) of the branching uncertainty at that node weighted by the

node probability, i.e.,

N
H, = L P, H.. (7)

Example 8: Continuing Example 7, we calculate H; by (7) to

obtain

- Z.42 -

ten
i

(l)Hl + (.7)H2

1.157 + (.7)(.985)

1.846 bits
in agreement with the direct calculation of Example 7.

Proof of Theorem l: From (6), we see that the k-th non-terminal

node, 1f it is not the root node, will contribute + Pk log Pk
to the term in the sum in (7) with i=k, but will contribute

- Pk log Pk to the term for i such that qij = Pk (i.e., to the
term for i such that non-terminal node k is at the end of a

branch leaving non-terminal node 1i.) Hence, the total contribution
of all non-terminal nodes, except the root, to the sum in (7) is
O. The root node, say i=1, contributes only the term + Pl log P

1
to the sum in (7), but this is also O since Pl=l. Finally, from

(6), we see that the k-th terminal node contributes - P log P
to the sum in (7), as it affects only the term for that i such

that d;4 = Py- Hence, we have provéd that

T

! Py Hy = -] px log py, (8)
i=1 k=1

as was to be shown.

D. Lower Bound on E[W] for Prefix-Free Codes

We now use the results of the pPrevious section to obtain a
fundamental lower bound on the average codeword length, E[W], of
a D-ary prefix-free code for a K-ary random variable U. We have
already noted that such a prefix-free code defines a D-ary rooted
tre2e in which each codeword corresponds to a terminal node.

The probability distribution PU assigns probabilities to the

coocewords and hence to the terminal nodes whose sum is 1. By con-

L

| -

o=
L J

Ve W

- G I O S G G Ga

=

- 5 e G

=3

- Z.13 -

vention, we assign probability O to any terminal node that does

not correspond to a codeword. We further assign to all non-terminal
nodes a probability equal to the sum of the probabilities of the
nodes at depth 1 in the subtree stemming ﬁrom this non-terminal

node. This now creates a D-ary rooted tree with probabilities.

Example 9: Taking PU(ul) = .1 and PU(uz) = PU(u3) = PU(u4) = .3

for the binary prefix-free code in Example 2 results in the

following binary rooted tree with probabilities:

0 : :
u
0 .4 4 4 {c;
1 1 .1 ‘
)
I 2
= : |.ul
° ®
u
1 6 2
1 .3
—.u3

For the D-ary rooted tree with probabilities created by

the construction just described, we see that
Hy = H(U), (9)

i.e., the terminal uncertainty equals the uncertainty of the

random variable being coded. Moreover, because D branches leave

each non-terminal node, it follows from the Corollary to Theorem 1.1l
that |

Hy < log D (10:

at each intermediate node with equality if and only if the next
code digit is equally likely to be any of the D possibilities given

that the previous code digits are those on the path to that non-

» G 08 Nob:

terminal node. Using (9) and (10) in (7) now gives

(11)

But, by the Path Length Lemma, the sum on the right of (1l1) is
recognized to be the average depth of the terminal nodes, i.e., the

average codeword length E[W]. We have thus proved the following

fundamental bound.

Theorem 2: The average codeword length, E[W], of any D-ary prefix-

free code for a K-ary random variable U satisfies

Tog D ' (12)

where .equality holds if and only if, given any proper prefix of

a codeword, the next digit is equally likely to be any of the D

possible values.

[By a "proper prefix", we mean ‘a prefix that is not the
entire codeword. We agree to include the "empty sequence" among
Proper prefixes so that the "next digit" referred to in the

theorem could be the first digit of a codeword]

The bound (12) could possibly have been anticipated on
intuitive grounds. It takes H(U) bits of information to specify
the value of U. But each D-ary digit of the codeword can, according
to Theorems 1.1 and 1.3, provide at most log2D bits of information
about U. Thus, we surely will need at least H(U)/logzD code digits,
on the average, to specify U. Such intuitive arguments are
appealing and give insight; however, they are not substitutes for
proofs.

Theorem 2 is our first instance where the answer to a tech-
nical question turns out to be naturally expressed in terms of

Shannon's measure of information, but it is not vet a full justi-

> Q08 0@e -

=5t

e

&

[R

wme o =

- 2.15 -

fication of that measure as it specifies only a lower bound on
E[w]. Trivially, E[W] »1 is a valid lower bound also, but we

would not claim this bound as justification for anything. Only

if the lower bound (12) is, in some sense, the best possible lower :
bound will Shannon's measure be justified. To show this, we need
to show that there existcodes whose E[W] is arbitrarily close

to the lower bound of (12).

E. Shannon~-Fano Prefix~Free Codes

We now show how to construct "good", but in general non-
optimum, prefix-free codes. Perhaps the most insightful way to
do this is to return for a moment to our discussion of Hartley's
information measure in Section l1l.A. We argued there that, when -
the event U = u, occurs, it is és if one of l/PU(ui) equally likely3
possibilities occurs. But to code L equally likely possibilities
with equal length D-ary codewords, we need a codeword length of
fiogDLJ digits -- where FQT denotes the smallest integer equal

to or greater than x. This suggests that the length, W, of the

codeword for u, ought to be chosen as

W, = -zog ———3;—-1
i D PU(ui)

= |- logD PU(ui;] 5
!

—= 1

) - log PU(ui)] (15

log D .
If PU(ui) = 0, (13) becomes meaningless. We resolve this quandry

by agreeing here and hereafter that we do not bother to provide

codewords for values of U that have probability zero.

i
t
[
G
[}

Two questions now stand before us. First, does there exist a

prefix-free code whose codeword lengths are given by (13)? If so,

how small is E[W]?

To answer these questions, we first note the obvious

inequality

® < [x] < x+1.

(14)
From (13), we can thus conclude that
ws 2 - log, Pyluy) (15)
so that, if U is a K-ary random variable,
K -w, K log. P_(u.)
Z D 1 < z D D U 1l =
i=1 i=1
K
—_E PU(ui) = 1. ¢ (16)
i=1

But we now see that the Kraft inequality (2) is satisfied so that

there does indeed exist a D-ary prefix-free code whose codewords

have the lengths specified by (13).[We also recall that in Section B

we gave an algorithm to construct such a code.J

To see how good our code is, we observe next that (13) and

(14) imply
= log P_(u,)
w, < g i 4. (17)
log D
Multiplying by PU(ui) and summing over i gives, because of (1),
. H(U)
elw] < Tog D * 1. (18)

We see that this method of coding, which is called Shannon-Fano

coding since the technique is implicit in Shannon's 1948 paper but

3223

&

]

&=

= =3

- & W

- 4.1l -

was first made explicit by Fano, gives us a prefix-free code
whose average codeword length is within 1 digit of the lower bound

(13) satisfied by all prefix-free codes. Thus, we can conclude the

following:

The Coding Theorem for a K-ary Random Variable:

The average codeword length of an optimum D-ary prefix-free

code for a K-ary random variable U satisfies

H(U)

H(U)
Tog D\<E[W]<————+l. (19)

log D

Moreover, E[W] for Shannon-Fano coding also satisfies- (19).

This coding theorem does not quite give a complete justificatic
of Shannon's measure of information because the upper bound cannot

be made arbitrarily close to the lower bound. The complete justi-

o

fication must await our introduction in Section G of coding for

&~

an information source that emits a sequence of random variables.

+

Example 10: Consider binary Shannon-Fano coding for the 4-ary

random variable U for which PU(ui) equals .4, .3, .2 and .l for

i equal to 1,2,3 and 4, respectively. We first use (13) with D=2

to compute the codeword lengths as

_ T 1] _
wl = log2 4| = 2
_ T 1] _
Wy = |legy F| = 2
- -

- 1
w3 = log2 S| = 3
_ I 171 _
W, = log2 il 4.

We then "grow the code" by the algorithm given in Section B to

obtain the code whose binary tree is

0 7 D
1 .3
1 D .2
1 Y s, SRR
B 1 3 .1
s

By the Path Length Lemma, we see that
EW] =1+ .7+ .3+ .3+ .1=2.4
and a direct calculation gives
H(U) = 1.846 bits.

We see indeed that (19) is satisfied. We note that our code,
however, is élearly non-optimal. Had we simply used the 4
possible codewords of length 2, we would have a better code

(E[W] = 2). Nonetheless, we know from our coding theorem that

no code can beat the E[W] of our Shéﬁnon-Fano code by more than

l digit. When the best Eﬁw] is large, Shannon-Fano coding is
nearly optimal. But when the best~E[W] is small, we generally can

do much better than Shannon-Fano coding.

F. Hufiman Codes -- Optimal Prefix-Free Codes

We now show how to construct an optimum D-ary prefix—-free

code for a K-ary random value U. We assume that
-Pu(ui) >0 i=1,2,...,K
so tnhnat we must assign a codeword to every possible value of U.

ie first consider binary codes, i.e., D=2. Two simple lemmas

will give us the key to the construction of an optimum code.

W@ b . -

- o 3

—

b

= 23

== £

I
[

L
[

- 2.19 -

Lemma 1: The binary tree of an optimum binary prefix-free code for U has no

unused terminal nodes.

Proof: Suppose the tree has unused terminal nodes. Because the code is optimal, -
unused nodes must be at maximum depth in the tree. Then for at 1

east one value u,.
U we have the situation N

r—ilﬂm ui 0—%3
ooo——.‘l or LB -
L1 ___l;_q.ui

In either case, we can delete the last digit of the codeword for v, (without

changing the other codewords) and still have a prefix—-free code. But the

new code has smaller Eﬂw] and thus the original code could not have
been optimal.

-0 Qe @ i

Lemma 2: There is an optimal binary prefix-free code for U such

that the two least likely codewords, say those for u and u,,,

K-1 K
differ only in their last digit.

. : >
Proof: Assume Pylug_y) > Pylug) . Let z, be one of the longest

codewords in an optimum code for U. Then, because by Lemma 1
there can be no unused terminal nodes in the code tree, we must

have the situation

0 u
0 o% —®]
. —— l Or LI R 1

where uy is some other source value. Now, if j # K, switch the
nodes for uj and Up - This cannot increase EEW] since P(uj) > P(uK)

and wi > wK. If i + K - 1, switch the nodes for ui and uK—l' This
cannot increase E[W] by a similar argument. Hence, because the
original code was optimal, then so is the new code. But the new

optimum code has its two least likely codewords differing only

in their last digit.

Because of Lemma 1 and the Path Length Lemma, we see that
the construction of an optimum binary prefix-free code for the

K-ary random variable U is equivalent to constructing a binary

tree with K terminal nodes such that the sum of the probabilities

of the non-terminal nodes is minimum when the terminal nodes are

assigned the probabilities PU(ui) for i = 1,2,...,K. But Lemma 2

tells us how to construct the first non-terminal node in an

optimum code tree, namely as 0 PU(uK-l)
pr—— B
)
Py (Ug-1) Py (ug)
L P.(u
——® Pylup,,

where Upo1 and u, are the two least likely values of U. But, if we

should now prune our binary tree at this intermediate node with

probability PU(uk l) + P

nodes in the new tree.

U(uK), it would become one of K-1 terminal
Completing the construction of the optimum
code would then be equivalent to constructing a binary tree with
these K-1 terminal nodes such that the sum of the probabilities of
the non-terminal nodes is minimum. Again Lemma 2 tells us how to
construct the first non-terminal node in this new tree. Etc.

We have thus proved the validity of, the following algorithm, due

to Huffman, for constructing an optimal binary prefix-free code

for a K-ary random variable U such that P(u) £ 0, all u.

Huffman's Binary Algorithm:

Step O: Designate K terminal nodes as u

probability PU(ui) to node ui

l,u2,...uK and assign

for i = 1,2,...K. Consider these K

nodes as "active".

Step 1: Tie together the two least likely active nodes with

binairy branches in the manner

25 volPodh ¢ e

L

J

=

[

& W OCoO

sy

L

SR

= £33

|

- 2.21 -

Deactivate these two active nodes, activate the new node and give

it probability equal to the sum of the probabilities of the two

nodes just deactivated.

Step 2: If there is now only one active node, then ground

this node and stop. Otherwise, go to step 1.

Example 1ll: Consider the random variable U such that

u Aj u, i u, % u, i u, I ug l U * .

Byw) | .05 | .10 .15 | .20 |.23 | .27 :

An optimal binary prefix-free code for U is the following :

0 .15 L%u u 2
0_ .30 ;._l,u; u 0000
L0 T 1 ';5u3 u, | 0001
i TR ¥ e T v | 001
: L ,29“5 u, 10
oy ug | 11
ue 01

Notice that E[W] = 2(.20 + .23 + .27) + 3(.15) + 4(.10 + .05)

1.40 + .45 + .60 = 2.45. B

6
Also,H(U) = -) Py(w log, P,(u) = 2.42 bits, so (18) is indeed satisfied.
i=1
We now consider the generalization of the previous results for D = 2 to

the case of arbitrary D. First, we prove:

Lemma 0': The number of terminal nodes in a finite D-ary tree is always given by

D + q(D-1) where q is the number of non-terminal nodes beyond the root.

Proof: Consider building such a tree from the root. At first we get :
D —
which has D terminal nodes. At each step thereafter, when we extend any terminal

node we get D new terminal nodes but lose one old one (the one extended) for *

a net gain of D-1 terminal nodes, and we gain one intermediate node beyond

the root. The lemma follows.

- 2.22 -

Now consider the tree for an optimal D-ary code for U. Such a tree can
have no unused terminal nodes,except at the maximum length, because if there
were such a node we could decrease Elw] by moving one of the codewords of maximum
length to this node. Moreover, if there are D-1 or more unused terminal nodes
at the maximum length, we could gather D-1 or D of these unused nodes on one

intermediate node as Y

A)
S07 e ITTC
L .0 i
. ! . D-1 or T e i D or more
. unused i unused
ot Rt T

Thus, we can shorten the codeword in the forﬁer case, or create an unused node
at length less than maximum in the latter case. But, in either case, the code
could not have been optimal. We conclude:

Lemma 0'': There are at most D-2 unused terminal nodes in the tree of an
optimal prefix-free D-ary code for U and all are at maximum length. There is
an optimal D-ary code for U that has all the ,unused terminal nodes stemming
from the same previous node.

Let r = number of unused terminal nodes. Then if U has K values, we have

no.of terminal nodes in‘the _ .
£ D-ary tree of the code)

From lemma 0'' we know O < r < D-1 if the code is optimal. It thus follows
from lemma 0' that the value of q is uniquely determined for an optimal code
by the inequalities

D + (q-1)(D-1) < K < D + q(D-1).

r = [D+ q(D-1)] - K

D - K =-q(D-1) + r where 0 < r < D-1.
It follows. then, from Euclid's division theoren, that r is the remainder when

P-K is-divided by D-1l. (The quotient is -q.) Letting Ri(j) denote the remainder
when j is divided by i, we have

r = RD_l(D-K).
iii:s is not a convenient form since D-K will usually be negative. But, since

Ri(J) = Ri(j + ti) for any t, we have, upon taking t = K - D,

= vl

o

.

= B3

] P &5 .

P

il

r

2

|

- =

|

- 2.23 -

r = R, . (D-K + [K-D][D-1])
= Ry, [(K-D)(D-2)].

Thus, we have proved:

Lemma 1': The number of unused terminal nodes in the tree of an optimal D-ary

prefix-free code for a random variable U with K possible values is
Ry, [(k=D)(D-2)].
Arguments entirely similar to those we used in the binary case would give,

mutatis mutandis,

Lemma 2': There is an optimal D-ary prefix-free code for a random variable U

with K possible values such that the D-r (where r = RD-l [(R-D) (D-2)]) least
likely codewords differ only in their last digit.
Lemma 2' tells us how to form the first non-terminal node b

in the D-ary tree of an optimum prefix-free code for U. If we
prune the tree at this non-terminal node, Lemma O" tells us that
there will be no unused terminal nodes in the resulting D-ary tree.
The Path Length Lemma then tells us that constructing an optimum
code is equivalent to construcéing a D-ary tree with these K+ r -(D -

terminal nodes that minimizes the sum of the probabilities
of the non-terminal nodes. Lemma 2' now tells us how to form the
first non-terminal node in this new tree with K+r-D+1 terminal nodes,
namely by creating a non-terminal node from which stem the D least
likely of these terminal nodes. Etc. We have thus justified the

following algorithm for constructing an optimal D-ary prefix

code (D > 3) for a K-ary random variable U such that P{(u) + 0 for all

Huffman's Non-Binary Algorithm:

Step 0: Designate K terminal nodes as Ups Uy eee U and assign
probability Pb(ui) to node ug for i =1, 2, ... K. Consider these K nodes

as active. Compute r = Ry . [(K-D)(D-2)].

e -0 * .

Step 1: Tie together the D-r least likely active nodes with

D-r branches of a D-ary branch in the manner

0]
(D) h
1
——e
: y The D-r active nodes.
D-r-1
— D-r .
> r unused nodes.
D-r
0 J

Deactivate these D-r active nodes, activate the new node, and
assign it a probability equal to the sum of the probabilities

of the D-r nodes just deactivated.

Step 2: If there is only one active node, then ground this node

and stop. Otherwise, set r = O and go to step 1.
Example 12:For the same U as in the previous example and D = 3, we have

Ry 1 [¢(K-D) (D-2)] = R, [(6-3)(3-2)] = 1. We construct an optimum code as
0 .05

@ u
0 .15{1 .10 1 .
e s S e .____._._.e U2 |

L2 s
.50 1 .15
..____..°u3
2 .20
S —TT
0 23 4
DU
5
ol 1 .27
——— i. 5 R 3“6

(=}

00 Note:

[=

c

0 1 e{w]= 3(.15)+2(.35)+1(.50)
1 = 1.65
2

c

N

e

H(U) 2.42
log D - 1,59 - 1-32

c

H O N NN NN

[~
[T VR S OSSN

G. Variable Length Coding of a Discrete Memoryless Source

Most "information sources” do not emit a single random
variable, but rather a sequence of random variables. In fact,
we implleitly recognized this fact when we required our codes
for vandom variables to be prefix-free so that we could immediately
recognize the end of a codeword when it appeared in a sequence of

codewords. We now make precise the kind of "sequential" information

source that we shall consider.

ER

s we WA

i)

e -

i i | [__

[
)
L

B3

[]

Definition:

whose output Sequence U

independent andg identically

- 2.25 -

A discrete memoryless source (or DMS) is a device

random variables.

ll U2'

is a sequence of Statistically

-distributed (i.i.4.) discrete

A DMS is mathematically the simplest kindg of information

Source to consider and is an appropriate model for Certain

practical situations.

However ’

many actual information sources

have memory in the sense that successive output letters are

DMS is Precisely H(u) bits/letter,

of a single letter from the source,

The Block-to-Variable

~-Length Coding Theorem for a DMs: There

exists a D

a DMS such that the average codeword length

where H(U) is the uncertainty of a Single letter.

ELW: _ H(U)

L

log D

+

1

L

satisfies

Conversely,

for every D-ary prefix-free code for a block of L letters,

E(W] | H(U)

L “log D °*

Proof: First,

wWe see that we can regard this manner of coding

a DMS as coding for the random variable Vv where

Thus,

V = [Ul, Uysr «u. U

ud-

it follows from (1.33) and Theorem 1.2 that

H(V)

H(Ul) + H(UZ) +

L H(U)

r

ce. + H(UL)

where H(U) is the uncertainty

-ary prefix-free code for a block of L letters from

(20)

(21)

(22)

e

™R e d ey

- 2.26 -

where the second equality follows from the identical distribution

’UL' Thus, we can immediately apply

Theorem 2 to conclude that, for any D-ary prefix-free code

Ul,...

for V.,

H(V) _ L H(U)
elw] > log D log D

from which (21) follows. Conversely, we can apply (19)

to conclude that there exists a prefix-free code for V such

that

H (V) L H(U)
< o ——t——
E[w] 1 +1 =73 + 1

This , upon dividing by L, establishes (20) .

It should be clear that an optimum block-to-variable-
length coding scheme [in the sense of minimizing E(W], the
average number of D-ary letters per source letter, over all

D-ary prefix-free codes for v] is obtained by applying the

Huffman algorithm to the random variable V considered in the

preceding proof.

H. Block Coding of a Discrete Memoryless Source

The variable length codewords that we have considered up
to this point are sometimes inconvenient in practice. For

instance, if the codewords are stored in a computer memory,

of

one would prefer to use codewords whose length coincides with

the computer wordlen

gth. Or if the digits in the codeword are

to be transmitted synchronously (say, at a rate of 2400 bits/

sec) , one would need to pbuffer variable length codewords to
assure a steady supply of digits to be transmitted. But it

was piecisely the variability of the codeword lengths that

permitted us to encode efficiently a block of source letters.

o

- G

= A

N

- Ay - wen

T

ke

- EE ==

===

- 2.27 -

How can we dget similar efficiency when the codewords have a
fixed length? The answer is that we must assign codewords
not to blocks of source letters but to variable length

sequences of source letters.

We now consider the coding of a variable number of
source letters into a fixed-length, or "block", codeword

as indicated in Fig. 4.

v=[u u, ... 0]

z = [X; X, ... X]
< Encoder Message le- DMS
D-ary letters Former

Fig. 4: Variable-Length-to-Block Coding of a
Discrete Memoryless Source.

Here, the D-ary codewords all have length N, but the length, Y,
of the message to which codewords are assigned is a random
variable. The "message former" can be thought of as a device
which stores letters from thg DMS until these letters form

one of the sequences to which codewords are assigned. The
criterion of goodness is E(Y), the average message length.
Notice that N/E(Y) is the average number of D-ary letters

per source letter -~ thus, we would like to make E(Y) as

large as possible.

In order that we can always reconstruct the source output
sequence from the codewords, it is necessary that every
sufficiently long source sequence have some message as a pre-
fix. In order that the message former be able to recognize
a message as soon as it is complete, it is necessary that
no message be the prefix of a longer message. Thus, we define

a proper message set for a K-ary source to be a set of messages

that form a complete set of terminal nodes for a rooted

K-ary tree.

n.ets s W e

“ owd e

- Z.28 -

Example 13: K=3,source alphabet = {a,b,c}

a a a
b © 5 9 bu
L L ° o
L P PO arn = T P
C‘D LSO =
8
A proper An improper An improper
message set message set message set

It should be noted that the sequence Vl,Vz,... of messages
from the message-former is itself an i.i.d. sequence when the
message set is proper. This follows from the fact that the .
message-former recognizes the last letter in each message without
looking further along the source output sequence; this, together
with the fact that the source is a DMS, implies that the source
letters that form Vi are statistically independent from those

that form Vl'vz""vi—l and have the same distribution.

We can assign probabiiities to the K-ary rooted tree cor-
responding to a message set by assigning probability 1 to the

root node and, to each subsequent node, assigning probability

equal to the probability of the node from which it stems multiplied

by the probability that the DMS emits the letter on the branch
connecting these nodes. In this way, the probabilities of the

terminal nodes will be just the probabilities that the DMS emits

these messages.

Example 14: Suppose the DMS is ternary with Pyla) = .1, Py(b) = .3

and PF(C) = .6,

Then this DMS creates the following ternary rooted tree with

probabilities for the proper message set given in Example 13:

vt @ GRd -
- |] ':]

=

e

| 1P |

- 2.29 -

1
r_—ii———4b
1 b 43
L 4 -06
—2 o
c .6 b .18
o

c .36

It follows from our construction of the K-ary rooted tree

with probabilities for a K-ary DMS and a K-ary proper message

ir@e -wham =

set that the terminal uncertainty is just the message uncertainty,

i.e.,

Hy = H(V).

It follows also that all non-terminal nodes have branching

uncertainty equal to H(U), i.e.,

H, = H(U), all i,
1 .

Thus, Theorem 1 can now be applied to give

N
H(V) = H(u)) P,
21

1

where Pi is the probability of the i-th non-terminal node.

Applying the Path Length Lemma to (25) gives the following

fundamental result.

Theorem 3: The uncertainty, H(V), of a Proper message set for a

K-ary DMS with output uncertainty H(U) satisfies
H(V) = E[Y] H(U)

where E[Y] is the average message length.

Example 15: for the DMS of Example 14, the output uncertainty

is H(U) = .1 log (.1) - .3 log (.3) - .§ log (.6) = 1.295 bits.

(23)

(24)

(25)

LE 1" R TI P

(26

- 2.30 -

By the Path Length Lemma applied to the tree in Example 14,
we find E[Yl = 1.6 letters. It follows from Theorem 3 that the

uncertainty of this proper message set is
H(V) = (1.6)(1.295) = 2.073 bits.

The reader is invited to check this result directly from the
probabilities (.1, .3, .06, .18 and .36) of the five messages'

in this message set.

We now wish to establish a "converse to the coding
theorem" for variable-length-to-block encoding of a DMS.
But, since a block code is a very special type of prefix-free

‘code, we might just as well prove the following stronger result:

General Converse to the Coding Theorem for a DMS: For any

D-ary prefix—-free encoding of any préper message set for a
DMS, the ratio of the average‘codeword length, E[W}, to the

average message length, E[Y], satisfies

Efw] s H(U)
E|Y g log D (27)

where H(U) is the uncertainty of a single source letter.

Proof: Letting V be the message to which the codeword is

assigned, we have from Theorem 3 that

H(V) = E[Y] H(U) (28)
and from Theorem 1 that

EW] > % . (29)
Combining (28) and (29), we obtain (27).

Although the above proof is quite trivial, there is a more

subtle aspect of this converse theorem; namely, why is

re et ™

« @ e .

|
4
0

s

- 2.31 -

E[W]/E(Y] the appropriate measure of the number of code digits

used per source letter rather than EDW/Y]? The answer comes

from consideration of the "law of large numbers". Suppose we let
Yl’ Yz, Y3, ... be the sequence of message lengths for the
sequence Vl’ V2, V3, ... of messages, and we let Wl, Wz, W3, .o

be the sequence of codeword lengths for the corresponding

sequence Zl,ZZ,Z3,... of codewords. Because Vl,Vz,V3 .ss 1S an

i.i.d. sequence, the sequences Yl’YZ’Y3"" and Wl’WZ’W3""

are each i.i.d. Thus, the weak law of large numbers implies that

Y. +Y _ +...+Y

plim 1 72 n _

N+ n E[Y] (30)
and

W +W_+...+W

plim 1 2 n _

oo = =E[w]. (31)
But. (30), (31) and the fact that E[Y]%O imply that

plim WitWote. . +W_ _EW] (32)

e e A EfY] -

Equation (32) tells us that, after we have encoded a large
number of messages, we can be virtually certain that the ratio
of the total number of code digits we have used to code the
total number of source letters will be virtually equal to
E[W]/E[Y]. Thus, the ratio EEW]/E[Y] is the guantity of physical
interest that measures "code digits per source letter" and the
quantity that we wish to minimize when we design a coding

system for a DMS.

It is now time to develop the procedure to perform
optimum variable-length-to-block encoding of a K-ary DMS.
If the block length is chosen as N, then E[W] = N so minimization

of E[ﬁ}/E[YI is equivalent to maximization of the average message

<o Wl &

ay

* * AP .

LR TV Y

length, E[Yl. We now consider how one forms a proper message

set with maximum E[X]. From Lemma O' and the definition of

4 proper message set, it follows that the number, M, of messages

in a proper message set for a K-ary DMS must be of the form

M = K + g(K-1) (33)
for some nonnegative integer q. We shall form message sets
for a DMS by "extending" nodes in a K-ary rooted tree with
probabilities. By "extending a node", we mean the process of
converting a terminal node with probability p into an inter-
mediate node by appending K branches to it as indicated in
the following diagram:

4

where u, Uyr .. U, are the possible values of the source
letter U and where

P, = Py(u,) | (34)

is the probability that the next letter from the DMS will be
u, given that the source has already emitted the digits on

the branches from the root to the node that we have extended.

Definmition: A message set with M = K+q (K-1) messages is a

Tunstal; message set for a K-ary DMS if the K-ary rooted tree

can be formed, beginning with the extended root node, by g

applications of the rule: extend the most likely terminal node.

Examvle: Consider the binary memoryless source (BMS) having

PU(O) =P, = .6 and PU(l) =p, = .4. Then the unique Tunstall

message set with M = 5 messages corresponds to the tree:

[T TR

E

=

(==

R T O]

= =3

J

[5

==

23

=

- O/ O &=

B

==

=

where the intermediate nodes have been numbered to show the
order in which they were extended by the rule of extending
the most likely terminal node. there are two different
Tunstall message sets with M = 6 messages for this source
because there is a tie for the most likely node that would
be extended next in the above tree.] By the path length
lemma, we see that the average hessage length for this

Tunstall message set is

E[(¥] =1+ .60 + .40 + /36 = 2.36 letters.

Notice that, for the Tunstall message set of the previous
example, the probability (.24) of the most likely terminal

node does not exceed the probability (.36) of the least likely

intermediate node. This is no accident!

The Tunstall Lemma: A proper message set for a K-ary DMS is a

Tunstall message set if and only if in its K-ary rooted tree

every intermediate node is at least as probable as every terminal

node.

Proof: Consider growing a Tunstall message set by beginning from

the extended root and repeatedly extending the most likely

terminal node. The extended root trivially has the property that

NI "X BT IS

-

N 1 E A Y

- 2.34 -

no terminal node is more likely than its only intermediate
node. Suppose this property continues to hold for the first i
extensions. On the next extension, none of the K new terminal
nodes can be more likely than the old terminal node just ex-
tended and thus none is more likely than any of the old inter-
mediate nodes since these were all at least as likely as the
0ld terminal node just extended. But none of the remaining old
terminal nodes is more likely than any old intermediate node nor
more likely than the new intermediate node since this latter
node had been the most likely of the old terminal nodes. Thus,
the desired property holds also after i+l extensions. By in-

duction, this property holds for every Tunstall message set.

Conversely, consider any proper message set with the
property that in its K-ary tree no terminal node is more likely
than any intermediate node. This property still holds if we
"prune" the tree by'cutting off the K branches stemming from
the least likely intermediate node (ensuring in the trivial
case when some nodes have zero probability that we choose
an intermediate node at depth one branch from terminal nodes.)
After enough such prunings, we shall be left only with the
extended root. But if we then re-grow the same tree by extending
nodes in the reverse order to our pruning, we will at each
step be extending the most likely terminal node. Hence this
proper message set was indeed a Tunstall message set, and the

lemma is proved.

It is now a simple matter to prove:

fneorem 4: A proper message set with M messages for a DMS

maximizes the average message length, E[Y], over all such proper

I

= E) -

1

—

- 2.35 -

message sets if and only if it is a Tunstall message set.

Proof: Consider the infinite K-ary rooted tree for the DMS
having each node labeled with the probability that' the source
emits the sequence of letters on the branches from the root
to that node. For instance, for the BMS with PU(O) = .6,

this tree is

The key observations to be made are (l) that all nodes in the
infinite subtree extending from any given node are no more
probable than that node [}nd in fact are less probable unless
we have the trivial case that PU(u) = 0 for some u], and (2)
that all the nodes (both intermediate and terminal) in the
K-ary tree of a proper message set for this DMS are also nodes
with the same probabilities in this infinite tree. It then
follows from the Tunstall lemma that a proper message set

with M = K+q(K-1l) messages is a Tunstall message set if and
only if its g+l intermediate nodes are the g+1 most likely
nodes in this infinite tree. Thus, the sum of the probabilities
of the intermediate nodes is the same for all Tunstall message
sets with M messages énd strictly exceeds the sum of the

probabilities of the intermediate nodes in any non-Tunstall

A A WD

- 2.36 -

proper message set with M messages. The theorem now follows

from the Path Length Lemma.

The reader can now surely anticipate how Tunstall message
sets will be used to perform optimum variable-length-to-block
coding of a DMS. The only question is how large the message set
should be. Suppose that the block length N is specified, as
well as the size D of the coding alphabet. There are then only
DN possible codewords, so the number M of messages must be no
greater than DN; but we should clearly choose M as large as
possible since we want to maximize E[!], the average message
length. From (33), we see that we can increase M only in steps
of size K-1. Thus, the largest value of M that we may use
corresponds to the integer g such that

N N

O D -M=D =-K-qg(K-1l) < K-1

or, equivalently, such that

DN - K = g(K-1l) + r where O&Lr<k-1. (35)

But, thanks to Euclid, we now see from (35) thét this value

of g is nothing more than the quotient when DN = K is divided
by K-1. [Note that DN > K is required because the smallest
proper message set (namely, the extended root) has K messaqes.]

Thus, with the aid of Theorem 5, we have now justified the

following algorithm for optimum D-ary block encoding with block-

length N of a proper message set for a K-ary DMS with output

variable U.

Tunstall's Algorithm:

Step.0: Check to see that DN > K. If not, abort because no

such coding is possible. Otherwise, calculate the quotient g

when DN - K is divided by K-1,.

g

oy P) TRy
& J ! . !

7

- o O a =3

[

- 2.37 -

Step 1l: Construct the Tunstall message set of size
M = K+q(K-1) for the DMS by beginning from the extended root
and making g extensions of the most likely terminal node at

each step.

Step 2: Assign a distinct D-ary codeword of length N to each

message in the Tunstall message set.

Example 16:For the BMS (K=2) with PU(O) = .6, suppose we wish to
do an optimum binary (D=2) block coding with blocklength N=3
of a proper message set. From Step O in the above algorithm,
we find g=6. Step 1 then yields the following Tunstall

message set: 1296 ?
o - .

In accordance with Step 2, we now assign codewords.

message codeword

0000 00O

0001 110

001 001

010 01l1lo0

011 011

100 l1 00

101 101

11 111 ;

For convenience of implementation, we have chosen the codeword
to be the same as the message for those messages of length N=3,
and as similar to the message as we could manage otherwise. By

the path length lemma, we see that the average message length is

E(Y]=1 + .6 + .4 + .36 + .24 + .24 + .216

= 3.056

.982 code digits/source digit.

ELY]

The converse to the coding theorem for prefix-free coding of
a proper message set tells us that the above ratio could not

have been smaller than

H(U iy
Iégls = h(.4) = .971 code digits/source digit.

Notice that if we had used "no coding at all" (which is possible
here since the source alphabet and'coding alphabet coincide)

we would achieve trivially 1 source digit/code digit. It would
be an economic question whether the 2 % reduction in code digits
offered by the scheme in the above example were worth the cost
of its implementation. In fact, we see that no coding scheme

could "compress" this binary source by more than 3 %.

The converse to the coding theorem for. prefix-free coding
of a proper message set implies the lower bound of the following

theorem.

Theorem 5: The ratio, N/E[Y], of blocklength to average message

length of an optimum D-ary blocklength N encoding of a proper

message set for a K-ary DMS satisfies

e B e b

- o o

=

L

=

R & e O om =S

=3

- 2.39 -

H(U) N H(U) lOg(z/Pmin)lOg K

log D ¥ E[Y] < log D © N log p - log K)log D (36)

where H(U) is the uncertainty of a single source letter and
where Ppnin ~ Min PU(u) is the probability of the least likely

source letter.

Note that the right side of (36) becomes infinite when
Prin = O, reflecting the fact that it is absurd to supply code-
words for messages of zero probability -- as we do when we use
a proper message set for such a DMS. When Ppnin = 0, we really
ought to redefine the source to eliminate its zero probability
letters. When pmin> O, however, we.see from (36) that we can
make N/E[?] as close as we like to the lower bound H(U) /log D.

Thus, we have another affirmation of the fact that H(U) is the

true "information rate" of a DMS.

Proof of upper bound in (36): The least likely message in the
message set has probability Ppmin where P is the probability
of the intermediate node from which it stems; but since there
are M messages this least likely message has probability at

most 1/M so we must have

Pp . < 1/M (37)

min

But, by the Tunstall lemma, no message can have probability

more than P so that (37) implies
PV(V) < l/(Mpmin), all v
which in turn implies
- log PV(V) > log M - log (1/pmin), all v.

Multiplying by Pv(v) and summing over v now gives

H(V) >» log M - log (1/Ppip) - (38)

- 2.40 -

Next, we recall that the number M = K + q(K-1) of messages

was chosen with g as large as possible for DN codewords so

that surely
N .

M + (K-1) > D, (39)
But M 2 K so that (39) further implies

aM > oY,
which, upon substitution in (38), gives

H(V) > N log D - log (2/pmin). (40)
Making use of Theorem 3, we see that (40) is equivalent to

log(2/p_.)
N H(U) min
E[Y¥] * log D © E[¥] log D (41)

and it remains only to underbound E[¥] on the right in (41).

To do this, we note that with DN codewords we could have used

a constant length L message set such that

+
KL < DN < KL 1

i.e., such that

L>N_];99_D-l
log K

But in fact we used a Tunstall message set which maximizes
E[Y], so that we must certainly have

N‘log D - log K
E(Y] > n > 1o ¥ . (42)

Substituting this lower bound on E[Y] in the right side of

(41) gives the bound (36) as was to be shown.

" .

G S - G G - -

o . af 0l

[
[
)

=3

e

R - D oD = = W

==

L J

- 2.41 -

Suggested Readings

The books of Abramson, Gallager and McEliece, mentioned
at the end of Chapter 1, all treat Huffman coding but not

Tunstall coding. Tunstall's work was contained in a doctoral

thesis [A. Tunstall, "Synthesis of Noiseless Compression

Codes", Ph.D. thesis, Georgia Institute of Technology, Atlanta,
GA 1968] that was unfortunately never published in the open
literature. Tunstall coding is described in the following

article:

F. Jelinek and G. Longo, "Algorithms for Source Coding",

PP. 293 - 330 in Coding and Complexity (Ed. G. Longo),

CISM Courses and Lectures No. 216, Vienna and New York:

Springer-Verlag 1975,

which also has an excellent treatment of the complexity of

implementation of many different source coding schemes. i

LR L

CHAPTER 3

THE METHODOLOGY OF TYPICAL SEQUENCES

A. Lossy vs. Lossless Source Encoding

The reader will perhaps have noted that in the previous
chapter we considered three different ways to encode a discrete
memoryless source (DMS), namely: 1) block-to-variable-length
encoding, 2) variable-length-to-block encoding, and 3) variable-
length-to-variable-length encoding. This raises the obvious
question: Why did we not also consider block-to-block encoding?

This question has both an obvious answer and a very subtle one.

The obvious answer is that block-to-block coding of a DMS
is not interesting. Fig. 1 shows the coding situation. A message
is a block of L letters from the K-ary DMS; a codeword is a
block of N D-ary letters. Assuming that PU(u) > 0 for all K
possible values of the DMS output U, we see that the smallest N
that suffices to provide a differené codeword for each of the

K~ messages (all having non-zero probability) is determined by
the inequalities

or, equivalently,

N = .L log Kl

log D (1)

The striking conclusion is that this smallest blocklength N de-
pends only on the alphabet sizes K and D and on the message

length L. The uncertainty H(U) of the output U of the DMS is
irrelevant. Shannon's theory of information seems to say nothing
interesting about the conceptually simple problem of block-to-block
encoding of a DMS, at least nothing obvious.

- 6 iO G

e =

=

[
[
i

|

|55

=

)

Xl'xz"°'xN Block) Ul’Uz""UL Block K-ary
; Encoder | Message DMS
Former P(u)

Fig. 1l: Block-to-block encoding of a discrete memoryless source.

”always possible to make an exact reconstruction of the source

The subtlé answer to the question of why we have ignored
block-to-block encoding is that a satisfactory treatment of
this type of source coding requires us to make a distinction
that the other three types of source encoding do not reéuire,

namely the distinction between "lossless" and "lossy" encoding.

A lossless source encoding scheme is one in which.it is

output sequence from the encoded sequence. All of the source
coding schemes considered in the previous chapter were lossless.
A lossy source coding scheme is one in which one cannot always
make such a perfect reconstruction. But if the probability of

an incorrect reconstruction is sufficiently small, a lossy source

encoding scheme is generally quite acceptable in practice.

To treat lossy source coding, we shall use one of the most
powerful tools introduced by Shannon in his 1948 paper, namely,
the notion of a "typical" sequence.

& M Pl -

T, N T

3

B. An Example of a Typical Sequence b
s

The idea of a "typical" sequence can perhaps best be T

illustrated by an example. Consider a sequence of L = 20 1

binary digits emitted by a binary memoryless source with -

PU(O) = 3/4 and PU(l) = 1/4. .

&=

We will now give a list of three sequences, one of which was

actually the output sequence of such a source, but the other

two of which were artificially chosen. The reader is asked to

guess which was the "real" output sequence. The three sequences
are:

f
1
3

(1) .,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,,1,1.

(2) 1,0,,0,1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,1.

(3) 0,0,0,0,0,0,0,0,0,0,0,070,040,0,0,0,0,0.

Unless he thinks too much about this problem, the reader will
surely have correctly guessed that (2) was the real output se-
quence. But more thought might have led the reader to reject
this obvious (and correct!) answer. By the definition of a DMS,
it follows that

& W O O

PUl...Uzo(ul""’uZO) = (3/4)2(1/4)20-2 é E

= (1/4%3)? -

where z is the number of zeroes in the sequence ul,uz,...,uzo. _
Because z = 0 for sequence (1) whereas z = 6 for sequence (2), | |
it follows that the DMS is 36 = 729 times as likely to emit se-)
quence (2) as to emit sequence (l). But z = 20 for sequence (3) L

and we are thus forced to conclude that the DMS is 320/36 =
14
3

= 4,782,969 times as likely to emit sequence (3) as to emit

E

o,

L

== E e

sequence (2). Why then does our intuition correctly tell us
that sequence (2) was the real output sequence from our DMS

rather than the overwhelmingly more probable sequence (3)?

The "law of large numbers" says roughly that if some event

has probability p then the fraction of times that this event

Kol 8 »

will occur in many independent trials of the random experiment
will, with high probability, be close to p. The event that our
DMS emits a 1 has probability 1/4, while the event that it emits
a 0 has probability 3/4. The fraction of times that these events
occur within the 20 trials of the experiment that yielded se-
quence (2) is 6/20 = 3/10 and 14/20 = 7/10, respectively. In
sequence (3), these fractions are 0 and 1, respectively. Thus
sequence (2) conforms much more closely to the law of large
numbers than does sequence (3). Our intuition correctly tells

us that the DMS is virtually certain to emit a sequence whose
composition of 0's and 1's will conform to the law of large

numbers, even if there are othér output sequences overwhelmingly

~RaS 4

more likely than any particular one of these "typical sequences".
But if this is so, then in a block-to-block coding scheme we
need only provide codewords for the typical source output se-
quences. This is indeed the right strategy and it makes block-

to-block source coding very interesting indeed.

C. The Definition of a Typical Sequence

In his 1948 paper, Shannon spoke of "typical long sequences"
but gave no precise definition of such sequences. The wisdom of
Shannon's refusal to be precise on this point has been confirmed
by subsequent events. At least half a dozen different precise «
definitions of typical sequences have been given since 1948, but §
none is clearly "better" than the others. For some purposes, one .
definition may be more convenient, but for other purposes less
convenient. It is hard to escape the conclusion that Shannon was

well aware in 1948 of a certain arbitrariness in the definition

of typicality, and did not wish to prejudice the case by
adopting any particular definition. The choice of definition
for typical sequences is more a matter of taste than one of
necessity. The definition that appeals to our taste and that
we shall use hereafter differs slightly from those in the
literature. It should hardly be necessary'to advise the reader
that whenever he encounters arguments based on typical se-

quences, he should first ascertain what definition of typicality
has been chosen.

Consider a DMS with output probability .distribution P (u)
and with a finite output alphabet {al,az,...,a }, i.e., a
K-ary DMS. [As we shall see later, our definition of typical
sequences cannot be used for DMS's with a countably infinite
output alphabet, but this is not an important loss of generality
since any DMS of the latter type can be approximated as closely
as desired by a DMS with a finite output alphabet.] Let
U = [Ul'UZ""’UL] denote an output:sequence of length L
emitted by this DMS and let u = [ul,uz,...,uL] denote a possible

value of U, i.e., uje{al,az,...,aK} for 1 ¢ j ¢ L. Let na, (u) de-

note the number of occurrences of, the lettter a; in the sequence
u. Notice that if U = u, then ng; (W) /L is the fraction of times
that the DMS emitted the output letter a, in the process of
emitting the L digits of the sequence u. The law of large numbers
says that this fraction should be close to the probability P (a)
of the event that the DMS will emit the output letter a; on any
one trial. We are finally ready for our definition. First we re-

quire that some positive number e be given. Then we say that u

is an E-typical output sequence of length L for this K-ary DMS
if

n_ (u)

(1=€)Py(a,) § ——— < (1+e)Py(a,) (2)

for 1 ¢ i

/A
]

E LN e

f
L

-

b

g

B

bt

&S W m O, 8B =B

J

We shall usually be thinking of € as a very small positive
number, but this is not required in the definition. When € is

very small, however, say € %= 10-'3

+ then we see that u is an
e-typical sequence just when its composition of al's, a2's,...,
and aK's conforms almost exactly to that demanded by the law

of large numbers,.

Example 1l: Consider the binary DMS with PU(O) = 3/4 and
PU(l) = 1/4. Choose € = 1/3. Then a sequence u of length L = 20
is €-typical if and only if both

n,.(u)
G D s 95— < DD

and

2, 1 4. 1
(3)(3) < 730 < (3)(2).
Equivalently, u is e-typical if and only if both

10 ¢ n,(u) < 20

0

and

Notice that only sequence (2), which has ny(w) = 14 and

nl(g) = 6, is e-typical among the three sequences (l), (2) and
(3) considered in Section B. Notice also that if the second
condition is satisfied, i.e., if 4 (nl(g) & 6, then it must be
the case that 14 g no(u) £ 16 and thus the first condition will
automatically be satisfied. This is an accident due to the fact

1 78 = Whae .o

that K = 2 rather than a general property. The reader can readily

check that if the most probable value of U, say aj has §
probability PU(al) > 1/2 (as always happens when K = 2), -
then the satisfaction of (2) for i = 2,3,...,K implies that B
(2) is also satisfied for i = 1. In general, however, the K -

inequalities specified by (2) are independent.

In using typical sequence arguments, we shall usually re- -
quire € to be a very small positive number. Notice that, when -0
e < 1, (l-e)PU(ai) is positive whenever PU(ai) is positive. -
But it then follows from (2) that, if u is e-typical, na, (1)

P Yes ae,
&

must be positive for every i such that PU(ai) is positive. But,
because

nai(g) = L,

i=1

™M=
SIS ﬁ

we see that this is impossible unless L is at least as large
as the number of different i for which PU(ai) is positive. This [
is why our definition of a typical sequence cannot be used for
a DMS with a countably infinite output alphabet for which in-

s

finitely many output letters have positive probability. When

€ <1, there would be no e-typical output sequences (by our de-
finition) of length L from such a source because L would always

be smaller than the number of different i for which PU(ai) is
positive.

&

e

One further aspect of our definition of a typical sequence
deserves mention. When PU(ai) = 0, we see that (2) is satisfied
if and only if nai(g) = 0. Thus, if u is an e-typical output
sequence for a DMS, then U cannot contain any letters a, such that

i
PU(ai) = 0. This seems a very natural requirement on a "typical

sequence”, but some definitions of typical sequences do not demand

this intuitively~pleasing prohibition of zero probability letters
LY
withiin "typical sequences". '

&

=

e O a8 8

)

D. Tchebycheff's Inequality and the Weak Law of Large Numbers

In Section B, we invoked the "law of large numbers" in a
qualitative way to motivate our definition of a typical sequence.
We now provide a precise formulation of the "law of large numbers"”

that we shall use to make a quantitive study of typical sequences.

Our starting point is a very useful inequality due to Tchebyche:
Recall that if X is any real-valued random variable with finite
mean m, = E[(X], then the variance of X, denoted Var(X), is defined a:

var(x) = E[(x-m,)?]. (3)
Let A denote the event that |X—mx| > € and AS the complementary
event that lx-mxl < €, where € is any positive number. Then, the

right side of (3) can be rewritten to give

var(X) = E[(x-m,)%|alP(a) + E[(x-m)?[a%12(a%),

w0 iyee

But both expectations are obviously non-negative so that

var(x) » E[(X-m,)*|AIP(A).

2

Whenever A occurs, (X--m)2 > €~ so that

E[(X-my)?|A] » ¢?
and hence

Var(X) » e2p(a).

Dividing by 82 and writing P(A) more transparently as P(|X-mx|>€),

we obtain Tchebycheff's inequality

var(Xx)
P(I X-mXIQE) £ 8—2' ; (4)

which holds for every e > 0.

We shall need three additional properties of variance. il
To derive these, let X and Y be real-valued random variables L
with finite means so that Var(X) and Var(Y) are defined. The
first property is the trivial one that

Var(X) = E[X%] - mxz, (5) ¥

which follows from the definition (3) and the fact that

2., _ 2 _ 2]
E[(X-mx)] = E[X 2mxx + mX] §
_ 2, _ 2
= E[X7] 2mXE[X] + my >
_ 2 2 2 ¥
= E[X"] 2mX + my".

The second property is the only slightly less trivial one that

Y = cX =2 Var(y) = c2 Var (X), (6)

which follows from (5) and the fact that

2

E(v’] - m,2 = E(v?] - (B[y])2

[
|
g

= E(c®)?] - (Elcx])?2

. ;

= c®e(x?] - 2(e[x])2. : &

|

The last and least trivial of our desired three properties is the o
property that B
X and Y stat.ind. = Vvar(X + y) = Var (X) + var(y). (7) -
This property follows from (5) and the facts that _
2 2 .

(BIX + Y])" = (E[X] + E[Y]) .

= (E(x1)? + 2B[(XIE[Y] + (E[¥])2 U

and that)

&

J

r—

=]

—]

3.10

E{(X + Y)2] E[X2 + 2XY + Y2]

E(X?] + 2E[XY] + E[Y?]

E[(x%] + 2E[X]E[Y] + E[Y?],

where the last step follows from the statistical independence of
X and Y because then

E{XY]

I I xvy PXY(x,y)
Xy

= I Ixy Pe(x)P,(y)
Xy

= i X Px(x) Iy PY(y)

= E[X]E(Y]. (8)
By repeated application of (7), it follows that

Xy rXoreeo s X N
1772 N =2 Var(X;) =

Var(Xi). (9)
statistically indep. i=1 i

M=

1

Although we shall make no use of the fact, we would be remiss
in our duties not to point out that the implication in (9) holds
under the weaker hypothesis that Xl’XZ"°"XN are uncorrelated. By

definiton, Xl’XZ”"’xN are uncorrelated if E[X X] = E[X]E[X]
whenever 1 ¢ i < j & N. From (8) we see that 1f Xl,Xz,...,XN are
statistically independent, then they are also uncorrelated -- but
the converse is not true in general. We see also that we needed
only the relation (8) in order to prove that the implication in (7)
was valid. Thus, the implications in (7) and (9) remain valid when

"statistically independent" is replaced by "uncorrelated”.

We are at last ready to come to grips with the "law of large
numbers”. Suppose we make N independent trials of the same random
experiment and that this random experiment defines some real-valued

random variable X with mean mX and finite variance Var(X). Let Xi

INEY X)

e M

be the random variable whose value is the value of X on the

i-th trial of our random exXperiment. We interpret the intuitive
concept of "independent trials of the same random experiment"

to mean that the random variables Xl'x2""’XN are i.i.d. and
that each has the same probability distribution as X. Thus, in
pérticular, E[Xi] = my and Var(Xi) = Var(X) for i =1,2,...,N.

We now define the sample mean SN of our N independent observations
of X to be the random variable

_ 1
SN"E(X1+X2+“'+X)' (10)

1 N
E[SN] =N il E[Xi] = my. (11)
Moreover, using (6) in (10) gives

-1)
Var[SN] = N2 Var(xl + X2 + .., + XN).

Now using (9) yields

Var[SN] =

A T
M=

Var(x,) = L var(x). (12)

2 N

i=1

We can now use Tchebycheff's inequality (4) to conclude that,
for any given € > 0,

) < VaréX).

P|Sy - me| > €
Ne

Equivalently, for any given e > 0,

gl <8 w1 - Y] (13)
Ne

PS8, - m

N

=

B
Al

- O/

| S

E=E=]

=

ol § leb

By assumption, Var(X) is finite; thus (13) implies that, for

any given ¢ > 0,

lim P(|sN - mX| < g) =1, ‘ (14)

N >0

Equation (14) is sometimes also written (see Chapter 0) as

plim SN =m

N0 X

Equation (14) is the qualitative formulation of the so-called

L]
Weak Law of Large Numbers, which asserts that when N is very large,

then the sample mean of N independent samples of a real-valued

random variable X is virtually certain to be very close to the

mean of X. Inequality (13) is a quantitative formulation of this
Weak Law of Large Numbers.

The reader will surely remember that in Section B we invoked
the law of large numbers (in an intuitive way) to claim that the

fraction of times that some event occurs in many independent trials

of a random experiment is virtually certain to be very close to the

probability of that event. To see how this conclusion follows from

the Weak Law of Large Numbers, one uses the trick of "indicator
random variables" for events. If A is an event, then the real-valueé
random variable X such that X = 1 when A occurs and X = 0 when A 1
does not occur is called the indicator random variable for the

event A. Thus Px(l) = P(A) and PXGO) =1 - P(A), from which it
follows that

E{X] = P(A). (15)

The fact that the mean of an indicator random variable equals the
probability of the event thatit "indicates" is what makes this randor
variable so useful. But X2 = X so that (15) also implies

E(x’] = p(a),
which, together with (5), now gives

Var(X) = P(a)[1 - P(A)]. (1l6)

Now suppose as before that we make N independent trials of this
same random experiment and that Xi

trial. Then Xl + X2 + ... + XN is just the number of times that the

event A occurred, which we denote now as N

is the value of X on the i-th

A’ and hence S =N /N
is just the fraction of times that event A occurred. From (13),

(15) and (16), we now conclude that, for any € > 0,
N

P(|-N—A - P(A).I <€) >1 - P(A)[é'P(A)]. (17)
Ne

Inequality (17) is a quantitative formulation of the Weak Law
of Large Numbers for Events;

for any ¢ > o0,

the qualjitative formulation is that,

NA . :
lim P”? - P.(A)I < g) = 1. (18)
N>
Inequality (17) is of course quivalent to the complementary in-
equality that states, for any € > 0,
"a P(A)[1-P(A)]
PUF= - Pl 3 0 5 . (19)

Ne
It is this complementary inequality that we shall apply in our
study of typical sequences.

Our discussion of the "weak law" of large numbers has surely

made the thoughtful reader curious as to what the "

strong law"
might ke,

SO we digress here to discuss this latter law. Suppose

we make infinitely many independent trials of the random experiment

that defines the real-valued random variable X and that, as before,

et =

= A B3 EA

B em = e &
f]

E E

G B O & &

]

|- | K J === m E‘_.. | ! | ! J L |

- =N .

o —

we let Xi denote the random variable whose value is the value
of X on the i~th trial. The sample means 81’82’53"" are now

highly dependent since, for example,

I

Syl T mer (X Xy F oo X+ Xoy)
N 1
T ON+1 SN N1 XN+l'

Thus we should expect that when SN is close to E[X] then SN+l

will simultaneously be close to E[X]. The Strong Law of Large Numbers

asserts that when N is very large, then, in an infinite sequence

of independent samples of a real-valued random variable X, it is

virtually certain that the sample means of the first N samples,

the first N + 1 samples, the first N + 2 samples, etc., will all

simultaneously be very close to the mean of X. The equivalent

qualitative statement is that, for any € > 0,

lim P(sup|Si-mX| < g) =1 (20)
i2N ’

N0

where "sup" denotes the "supremum" of the indicated quantities, i.e.,
the maximum of these quantities when there is a maximum and the

least upper bound on these quantities otherwise.

We applied Tchebycheff's inequality to S, above to conclude

N
that, for any € > 0,
P(|Sy -~ my| > €) < YEEL&L‘ (21)
N T M N2 |

The bound (21) was tight enough to imply (14), the Weak Law of
Large Numbers, but it is not tight enough to imply (20), the Strong
Law. The reason is this. Tchebycheff's inequality (4) is the tightest

bound on P(|X-m |>e) that can be proved when only m, and Var(X) are

3.15

known, cf. Prob. 3.3. However, we know much more about the

random variable SN than just its mean and variance. We know

also that SN is the sum of N i.i.d. random variables. This

further information allows one to prove a much stronger bound [
than Tchebycheff's inequality on P(|SN-mXI>€). This much stronger
bound, Chernoff's bound (cf. Prob. 3.5), shows that, for any € > 0, [
P(lsy - m | 3> €) g2¢8)" (22)
N HB{ ” ~ €

where Be depends on €, but always satisfies

0 < B€ < 1.

Note that the upper bound BEN of (22) decreases exponentially
fast as N increases, whereas the bound of (21) decreases only

as 1/N. Chernoff's bound (22) gives a much truer picture of the

way that P(ISN-mXI;E) decreases with N than does our earlier [:
bound (21). However, we shall continue to use the simple bound,

in its form (19) for events, in our study of typical sequences [
because it is sufficiently tight to allow us to establish the

qualitative results of most intere;t. When we seek guantitative i

results, as in Chapter 5, we shall not use typical sequence

arguments at all. The typical sequence approach is excellent for T
gaining insight into the results of information theory, but it is -
not well-suited for quantitative analysis. g

L

To see how the Chernoff bound (22) can be used to derive the

Strong Law of Large Numbers, (20), we note that if the supremum i
of |Si-mx| for i » N is greater than €, then |Si-mx| > € must hold .
for at least one value of i with i > N. By the union bound (i.e., i
by the fact that the probability of a union of events is upper -
bounded by the sum of the probabilities of the events), it follows i

then that, for any € > 0,

P(suplsi-mxl> € s £ p(s;-m | > e).

(23)
i>N i=N

[

] -

B

Baicd

3.16

If the simple bound (21) is used on the right in (23), the
summation diverges and no useful conclusion is possible. Sub-

stituting the Chernoff bound (22) into (23), however, gives

N .
8", (24)

P(sup]Si -m
¥

«l >)<

2
1-8
i>N €
The right side of (24) approaches 0 (exponentially fast!) as N
increases, and this establishes the Strong Law of Large Numbers,

(20) .

This concludes our rather long discussion of Tchebycheff's
inequality and the Weak Law of Large Numbers, the only result of
which that we shall use in the sequel is the simple bound (19).

It would be misleading, however, to use (19) without pointing out
the extreme looseness of this simple bound; and we would find it
most unsatisfactory to discuss a "weak law" without telling the
reader about the "strong law" as well. But the reader is surely as.

as impatient as we are to return to the investigation of typical f

sequences.

E. Properties of Typical Sequences

As in Section C, U = [Ul'Uz""'UL] will denote a length L
output sequence from a K-ary DMS with output alphabet {al,az,..,aK},
u = [ul,uz,...,uL] will denote a possible value of U, and nai(g)
will denote the number of occurrences of a; in the sequence u. From

the definition of a DMS, it follows that

|
=

Py(w)

P_(u.)
1] 3 U3

1
na.(g) c
3 [PU(ai)] i . (25)

i
=R

i

The definition (2) of an e-typical sequence can equivalently be

written as

(l-e)LP,(a;) < n, (u) g (l+e)LP, (a,). (26)

1

a

Using the right inequality of (26) in (25) gives

Po(w > | (1+€)LPy(a;)

. [PU(ai)
- 1

=R

1

Or, equivalently,

K

or, again equivalently,

K
(l+€)Li£l PU(ai)logZPU(ai)

Pylu) » 2

But this last inequality is just

PU(E) > 2-(l+g)LH(U)

where the entropy H(U) is in bits. A similar argument using the

left inequality of (26) in (25) gives

PU(E) < 2-(l-€)LH(U)

‘and completes the proof of the following property.

Property 1 of Typical Sequences: If U is an g-typical output

sequence of length L from a K-ary DMS with entropy H(U) in bits,
then

2°(l+e)LH(U)

~

¢ B (u) ¢ 27 (L=e)LH(D)

We now wish to show that, when IL is very large,

sequence U of the DMS is virtually certain to be €

the output
-typical. To this
end, we let B, denote the event that U takes on a value u such that

(2) is not satisfied. Then, if PU(ai) > 0, we have

(27) -

‘-

[

3.18

n_ (0)

- i
P(B,) = P(|—F Pylay)| > epy(ay))

PU(ai)[l-PU(ai)]

~

2
L[EPU(ai)]

where we have made use of (19). Simplifying, we have

1-P (a.) .
P(B,) g — 0L (28)
1 2 v
Le™P_(a,) 3
Ui
b
whenever PU(ai) > 0, Now defining Pmin as the smallest non-zero '
value of PU(u), we weaken (28) to the simpler
1
P(Bi) < S - (29)
Leg P,
min

Because P(Bi) = 0 when PU(ai) = 0, inequality (29) holds for all i,
l i g K. Now. let F be the "failure" event that U is not g-typical.

Because when F occurs at least one of the events Bi’ lg 1igK,
must occur, it follows by the union bound that
K
P(F) ¢ I P(B,).
. i
i=1
Using (29), we now obtain our desired bound
K
P(F) < =5, (30)
2
Le™P_ .
min

which assures us that P(F) indeed approaches 0 as L increases.

Property 2 of Typical Sequences: The probability, 1-P(F), that the

length L output sequence U from a K-ary DMS is e¢-typical satisfies

K
1-P(F) > 1 = —5—— (31

Le™P_.
min

where Pmin is the smallest positive value of PU(u).

It remains only to obtain bounds on the number M of e-typical

sequences u. The left inequality in (27) gives

-(l+e)LH(U)

14

l = x PU(E) > M2

which gives our desired upper bound

On the other hand, the total probability of the e-typical sequences

u is 1-P(F), so we can use the right inequality in (27) to obtain

1-2(F) « Mz-(l-s)LH(U).

Using (31), we now have our desired lower bound

q

K
M o> (1 - 2 S LE(D)

Le™P .
min

(33)

+

Property 3 of Typical Sequences: The number M of e-typical séquences
u from a K-ary DMS with entropy H(U) in bits satisfies

K
(1 - __3____)2(1-6)LH(U) < Mg 2(l+e)LH(U)I
Le™P .
min

(34)

where‘Pmin is the smallest positive value of PU(u).

Property 3 says that, when L is large and ¢ is small, there
are rougPiy ZLH(U) e-typical sequences u. Property 1l says then that
each of Ehese e-typical sequences has probability roughly equal to
Z—LH(Q). Finally, Property 2 says that the total probability of these

e-typlcal sequences is very nearly 1, This brief resumé is what

(X2) I

5

EY T S

oy
=

- e o e

| 75

| -

- &S O = aE am

The probability of loss, i.e., the probability that the codeword

will not uniquely specify the source output sequence, is just the
probability P(F) that U is not e-typical. Thus, P(F) is upper
bounded according to inequality (30). Because we can take £ to be
an arbitrarily small positive number and we can choose L to be
arbitrarily large, inequalities (30) and (35) establish the

following theorem.

The Block-to-Block Coding Theorem for a DMS:Given a K-ary DMS

with output entropy H(U) and given any positive numbers €. and ¢

1 2’

there exists, for all sufficiently large L, a D-ary block code
of blocklength N for block message sets of blocklength L such
that

N H(U)
L < logD ¥ £1

and such that the probability, P(F), that the codeword will not

uniquely specify the message satisfies

P(F) < €,
It should be apparent that one cannot make P (F) arbitrarily

small and at the same time have N/L substantially less than

H(U) /logD. In fact, we could prove this "converse" to the above
theorem also by typical sequence arguments. However, such a con-
verse would not answer the question of whether it is possible to
recover virtually all of the digits in U correctly when N/L was
substantially less than H(U)/logD. This is the more interesting
question, and we shall treat it in an exercise in the next

chapter.

¥ abh

This chapter should have given the reader some idea of the power
of typical sequence arguments. The real power, however, will become
more evident in the next chapter when we shall use typical sequence

arguments to prove Shannon's "noisy coding theorem".

-

Y YT XYY

should be remembered about typical sequences; it is rough
truths rather than fine details that are most useful in

forming one's intuition in any subject. [l

F. Block-to-Block Coding of a DMS ' b

We now return to the block-to-block coding problem for a
DMS that originally prompted our investigation of typical se-
quences. We again consider the situation shown in Fig. 1, but
now we allow our encoder to be "lossy". Suppose we assign a i

unique D-ary codeword of length N to each of the M e~typical

|

source output sequences u, but use a single additional codeword 3'

to code all the non-typical source output sequences. The smallest
N that suffices satisfies

=]

=

PR R | < DY,

and hence we are sure that we can have [
M>D

or equivalently, that

(N - 1)logD £ logM.

-
=]
I

t
L
i

v adtB8Be

Now using (32) we obtain

(N - l)logzD < (1+ e)LH(U) [j
or, equivalently,)

N H(U) eH (U) 1 ;

- < + +—.. : (35)

L logzD logzD L

3

&=

=

N

N e & mm

Chapter 4.

CODING FOR A NOISY DIGITAL CHANNEL

A. Introduction

- peu@ e

The basic goal of the communications engineer is to trans-
mit information efficiently and reliably from its source through
a "channel" to its destination. In Chapter 2, we learned some
fundamental things about information sources. Now we wish to
learn some equally fundamental things about channels. The first

question to be answered is: what is a "channel"?

Kelly has given a provocative description of a channel
as that part of the communications system that one is either
"unwilling or unable to changé." If we must use radio signals
in a certain portion of the frequency spectrum, then that |
necessity becomes part of the channel. If we have a certain
radio transmitter on hand and are unwilling to design or pur-
chase another, then that constraint also becomes part of the
channel. But when the channel has finally been specified, the
remaining freedom is precisely what can be used to transmit
information. If we could send only one signal (say a sinusoid
with a given amplitude, frequency and phase) then there is
no way that we could transmit information to the'destination.

We need the freedom to choose freely one of at least two

‘'signals if we are going to transmit information. Once we have

chosen our signal, the channel governs what happens to that
signal on its way to the destination, but the choice of the
signal was ours. In mathematical terms, this means that the

channel specifies the conditional probabilities of the various

signals that can be received, but the a priori probabilities
of the input signals are chosen by the sender who uses the

channel.

We shall consider only time-discrete channels so that the
channel input and output can both be described as sequences of

random variables. The input sequence Xl' X2, X3, ... is chosen

by the sender; but the channel then determines the resulting

conditional probabilities for the output sequence Y

Y Y

ll 2!
The discrete memoryless channel (DMC) is mathematically the

3’

simplest such channel and the one to which we shall give the
most attention. A DMC consists of the specification of three

quantities: (1) the input alphabet, A, which is a finite or at

most countably infinite éet {al,az,;..} » each member of which
represents cne of the signals that the sender can choose at
each time instant that he'uses the channel; (2) the output
alphabet, B, which is also a fini£e or at most countably in-
finite set {bl’bz""}' each member of which represents one

of the output signals that might result each time instant that

the channel is used; and (3) the conditional probability

distributions PYIX(.|x) over B for each xegA which govern the

channel behavior in the manner that

P(ynlxll"'Ixn_llxnlylli"lyn_l) = PYIX(YnIXn)' (l)
for .n=1,2,3,... . Equation (1) is the mathematical statement
that corresponds to the "memoryless" nature of the DMC. What

happens to the signal sent on the n-th use of the channel is

independent of what happened on the previous n-l1 uses.

.

y

L

R = - ‘.

b

=

e

[

=3

It should also be noted that (1) implies that the

DMC is time-invariant in the sense that the probability

distribution P does not depend on n. This is the reason

Yn|xn
that we could not write simply P(yn|xn) on the right side of

(1), as this is our shorthand notation for P |xn) and

Y [X Yy
n n
would not imply that this probability distribution does not

depend on n.

DMC's are commonly specified by diagrams such as those in
Figure 1 where: (1) the nodes at the left indicate the input
alphabet A; (2) the nodes at the right indicate the output
alphabet B; and (3) the directed branch from a, to bj is
la

labelled with the conditional probability P) [unless

v|x®yl34

this probability is O in which case the.branch is simply
omitted.] The channel of Fig. 1l(a) is called the binary

symmetric channel (BSC), while that of Fig. 1(b) is called

the binary erasure channel (BEC). We shall give special attention

hereafter to these two deceptively-simple appearing DMC's.

+

X Y (O5€gl)
1-§ L, 0
O >
§
X A Y (0g6g1)
3
1 1-§
1

Fig. 1: (a) The binary symmetric channel (BSC), and

(b) the binary erasure channel (BEC).

The following.description of how a BSC might come about
in practice may help to give a "feel" for this channel. Suppose
that every millisecond one can transmit a radio pulse of
duration one millisecond at one of two frequencies, say f. or f

0
which we can think of as representing O or 1, respectively.

ll

Suppose that these signals are transmitted through some broad-
band .medium, e.g., a coaxial cable, and processed by a receiver
which examines each one-millisecond interval and then makes a
"hard decision" as to which waveform was more likely present.
[Such hard-decision receivers are unfortunately commonly used;
a "soft-decision" receiver that also gives some information
about the reliability of the decision is generally preferable,
as we shall see later.] Because of thermal noise in the
transmission medium and in the receiver "front-end", there will
be some probability € that the decision in each millisecond
interval is erroneous. If the system is sufficiently wideband,

errars in each interval will be independent so that the over-

=

mr o OO

y

all system[:consisting of the "binary-frequency-shift-keyed (BFSK)

transmitter", the waveform transmission medium, and the hard-

decision BFSK demodulator] becomes just a BSC that is used once

o L Qal » ¢

each millisecond. One could give endlessly many other practical
situations for which the BSC is the appropriate information-
theoretic model. The beauty of information theory is that it
allows us to ignore the many technical details of such practical
systems and to focus instead on the only feature that really
counts as far as the ébility to transmit information is con-
cerned, namely the conditional probability distributions that

are created.

We now point out one rather trivial but possible confusing
mathematical detail about DMC's. Suppose we are using the
BSC of Fig. 1(a) and decide that we shall always send only

O's. In other words, we choose P (0) =1 and P, (1) = O

X X
n n

for all n. Note that the channel still specifies P (1]1)=1-¢,

Ynlxn
even though the conditioning event has zero probability so that
we cannot calculate this conditional probability by the

formula PX v (l,l)/Px (1) . Here, we are merely exploiting the
fact that,anthematic211y, a conditional probability distribution
can be arbitrarily chosen when the conditioning event has pro-
bability zero [see the discussion following equation (0.16)],

but we are allowing the channel to make this arbitrary choice

for us to avoid having to treat as special cases those uninterestin.

cases when the sender decides never to use one or more inputs.

Finally, we wish to discuss the situation that results when

we use a DMC without feedback, i.e., when we select the inputs

so that

P(xn|xl,...,xn_l,yl,...y

no1) = P(xnlxl,...xn_l) (2) ’

for n=1,2,3,... . Notice that (2) does not imply that we choose B
each input digit independently of previous input digits, only
that we are not using the past output digits in any way (as

we could if a feedback channel was available from the output -
to the input of the DMC) when we choose successive input digits., "

We row prove a fundamental result, namely:

Theorem 1: When a DMC is used without feedback, -

n
P(YII"'IanXlI"°IXn) = izl PYIX(YiIXi) (3)

A

for n=1,2,3,

Proof: From the multiplication rule for conditional probabilities,
we have
n (4)

P(xl,...,x 1Yyreeesy) = lnl P(x lxl'm'. ._l,yl,...yi_l)P(yilxl,...,xi,yl,.--,yi_l)

Making use of (1) and (2) on the right of (4), we obtain

= W G5 &=

n

P(Xl,...,xn,yl,...,yn) = iEl P(Xilxlpn-lei_l)PYIX(Yilxi)
n
= jnl P(x. le""’xj-l)][I P IX(Y | %,)J

n
=P(x1,...,x) n P lx(y lx)

= =4

==

Dividing now by P(xl,...,xn), we obtain (3).

=2l

The relationship (3) is so fundamental that it is often

- ghyv ¥
s

erroneously given as the definition of the DMC. The reader is

warned to remember this when delving into the information

iy [e
i \ v L

L

==

o = ==

]

theory literature. When (3) is used, one is tacitly assuming

that the DMC is being used without feedback.

Example 1l: Notice that, for the BSC,

l -¢ ify=x

P (y]|x)
YIx & ify £x.

Thus, when a BSC is used without feedback to transmit a block

of N binary digits, then

P(y|x)= (1-€)V (X0 gdx,y)

(1-€)V (l—fé)d(i’v ' (5)

where x = [xl,xz,...xN] is the transmitted block, y = [yl,yz,...yN]

is the received block, and d(x,y) is the Hamming distance

between X and y, i.e., the number of positions in which the

vectors X and y differ.

B. Channel Capacity

Recall that a DMC specifies the conditional probability
distribution P(ylx), but that the sender is free to choose
the input probability distribution P(x). Thus, it is natural
to define the capacity, C, of a DMC as the maximum average
mutual information I(X;Y¥) that can be obtained by choice of

P(x), i.e.

C = max T(X;Y)e (6)
PX
Equivalently,
C = max [H(Y) - H(Y|X)]. (7) ‘
PX ®

But now we have the more challenging task to show that this

definition is useful, i.e., to show that C gives the answer
to some important practical question about information trans-
mission. This we shall shortly do, but first we shall amuse
ourselves by calculating the capacity of some especially
simple channels which, thanks to the benevolence of nature,

include most channels of practical interest.

For convenience, suppose that the DMC has a finite number,
K, of input letters and a finite number, J, of output letters.

We will say that such a DMC is uniformly dispersive if the

probabilities of the J transitions leaving an input letter have,

when put in decreasing order, the same values (say, pl>p2>...;pJ)

for each of the K input'letters. Both channels in Fig. 1 are
uniformly dispersive as is also that of Fig. 2(a) [for which
P,=-5 and p2=.5], but the channel of:Fig. 2(b) is not uniformly
dispersive. When a DMC is uniformly dispersive, no matter which
input letter we choose, we get the same "spread of probability"”

over the output letters. Thus, it is not surprising to discover:

Lemma l: Independent of the choice of the input probability

distribution P(x), for a uniformly dispersive DMC,

J
H(Y|X) = - I p, log p. (8)
oy 3 j

where pl,pz,...pJ are the transition probabilities leaving each
input letter.

Proof: Immediately from the definition of a uniformly dispersive

channel, it follows that

H{V|X = a,)

]
[

| ¢ I
o

. lo \ 9
3 g PJ (9)

8 o0 W @

€+1 ==

j— R = R ==

S e G/

e |

4

-

L

T

=

=

L]

- e om G

=D

=g

for k=1,2,...,K. Equation (8) now follows from (9) and (1.18).
by
1/2
b
2 Y Y
v[7?
b3
(a) A uniformly dispersive DMC (b) A uniformly focusing DMC
that is not uniformly focusing. that is not uniformly dispersive.

Fig. 2: Two unsymmetric DMC's.

Example 2: For the BSC and BEC of Figure 1, (8) gives

h(€) (BSC)

H(Y|X)

H(Y|X) h(§). (BEC)
For the channel of Fig. 2(a), (8) gives

H(Y|X) = h(.5) 1 bit.

From (7), we can see that, for a uniformly dispersive
DMC, finding the input probability distribution that achieves
capacity reduces to the simpler problem of finding the input
distribution that maximizes the uncertainty of the output.

In other words, for a uniformly dispersive DMC,

C = max [H(Y)] +
Px 3

(LI o B

pj log pj (10)
1

where PysPys...Py are the transition probabilities leaving an

input letter.

(YR N ¥ W

A uniformly dispersive channel is one in which the pro-
babilities depart from each input letter in the same manner.
We now consider channels with the property that the probabilities
converge upon each output letter in the same manner. We shall

say that a DMC is uniformly focusing if the probabilities of the

K transitions to an output letter have, when put in decreasing
order, the same values for each of the J output letters. The

BSC [éee Fig. l(a)] is uniformly focusing, but the BEC [see

Fig. l(b)] is not. The channel of Fig. 2(b) is uniformly focusing,
but that of Fig. 2(a) is not. The following property of uniformly

focusing channels should hardly be surprising:

Lemma 2: If a K-input, J-output DMC is uniformly focusing, then
the uniform input probability distribution [i.e., P(x)=1/K, all x]
results in the uniform output probability distribution [i.e.,

P(y)=1/J, all y.]

Proof: P(y)

i
P}

P(y|x) P(x)

=1
= % I Plylx).

But, since the DMC is uniformly focusing, the sum on the right
in this last equation is the same for all J values of Y. Thus

P(y) is the uniform probability distribution.

It follows immediately from Lemma 2 and Theorem 1.1 that,

for a uniformly focusing DMC with K inputs and J outputs,

max [H(Y)] = log J (11la)
PX
and is achieved (not necessarily uniquely) by the uniform

input distribution

[
)

-ty 4 @ 8@ Gox-
e 2 B S G B Ga = =)

=

P(x) = 1/K, all x. (11lb)

The BSC is both uniformly dispersive and uniformly
focusing, but the BEC is not. Yet the BEC certainly appears
to be "symmetric", so we should give a stronger name for the

kind of "symmetry" that the BSC possesses. Thus, we shall say

that a DMC is strongly symmetric when it is both uniformly
dispersive and uniformly focusing. The following theorem is now

an immediate consequence of (10) and (11) above.

Theorem 2: For a strongly symmetric channel with K input letters
and J output letters,

J
C=1logd + I pj log pj (12a),
j=1]
]
where pl,pz,...pJ are the transition probabilities leaving 2
an input letter. Moreover, the uniform input probability)
distribution
P(x) =% , allx (12b)
achieves capacity (but there may also be other capacity-
achieving distributions.)
Example 3: The BSC [see Fig..l(a)] is strongly symmetric.
Thus,
C =1+ é'logzé + (1-€) log, (1-€)
or, equivalently, :
,

C =1 - h(€) bits/use. (BSC) (13)

Capacity is achieved by the uniform input distribution
PX(O) = Px(l) = % » which is the unique capacity-achieving
distribution unless &€ = 1/2 in which case all input distributions

trivially obtain the useless capacity C = 0.

From (lla), we see that the necessary and sufficient
condition for an input probability distribution to achieve
capacity on a strongly symmetric DMC is that it gives rise
to the uniform output probability distribution.

We now wish to give a general definition of "symmetry" .
for channels that will include the BEC. The BEC [see Fig. 1(b)] i

is not strongly symmetric, but a closer examination reveals
that it is composed of the two strongly symmetric channels
shown in Fig. 3, in thé sense that we can consider that,

after the sender chooseé an input letter, the BEC chooses to
send that letter over the channel of Fig. 3(a) or the channel
of Fig. 3(b) with probabilities ql=l-6 and q2=6, respectively.

In Fig, 4, we have shown this decomposition of the BEC more

precisely.
0
0 o <L 00 c=l ! . G
(a) i ql=l-6 (b) 1 q2=5
l o > O 1
1

Fig. 3: The two strongly symmetric channels that compose
the BEC. :

i
]

o
>

Fig. 4: The decomposition of the BEC into two strongly symmetric
channels with selection probabilities 9, and q2.

We now define a DMC to be symmetric if, for some L, it can
be decomposed into L strongly symmetric channels with selection
pr@babilities ql,qz,...qL. It is fairly easy to test a DMC for

Symmatiy. One merely needs to examine each subset of output

-

=

® 2. @o0h O

Isziad

=

i,]

=}

4.13

-~ NgFEgE -

letters that have the same focusing (i.e., have the same K pro-
babilities in some order on the K transitions into that output
letter), then check to see that each input letter has the same
dispersion into this subset of output letters (i.e., has the
same Ji probabilities in some order on the transitions from that
input letter to the Ji output letters in the subset being
considered). If so, one has found a component strongly symmetric

channel whose selection probability qy is the sum of the J, pro-

i
babilities on the transitions from an input letter to these J

EY T W %

i
output letters. If and only if this can be done for each of these

subsets of output letters, then the channel is symmetric. [Notice
that, if the channel is symmetric, the entire channel must be

uniformly dispersive. Thus, if a DMC is not uniformly dispersive,
one need not resort to this procedure to conclude that it cannot
be symmetric.] The reader can test his mastery of this procedure

on the two DMC's of Fig. 2, neither of which is strongly symmetric

but one of which is symmetric.

The importance of symmetric channels arises from the fact

+t 8 B D e ~

that, because of natural "symmetries", the DMC's encountered
in practice are usually symmetric. Thus, it is fortunate that

it is very easy to find the capacity of symmetric channels.

Theorem 3: The capacity C of a symmetric DMC is given by

L
C= 3% q. C, (14)

where Cl'CZ""'CL are the capacities of the L strongly

s Ambb-

symmetric channels into which the DMC can be decomposed with

selection probabilities Qy19yr e 09y respectively.

Example 4: Referring to Figures 3 and 4, we see that the BEC

can be decomposed into L=2 strongly symmetric channels with

capacities Cl =1, C2 = O and selection probabilities ql = 1-§,
q, = 6, respectively. Thus, Theorem 3 gives
C =1-86 bits/use. (BEC)

(15)

Proof of Theorem 3:

Consider the DMC as decomposed into L strongly symmetric

channels with selection probabilities ql,qz,...,qL (as shown

in Fig. 4 for the BEC), and define the random variable Z to
have value i (where 1<igL) in case the output letter that occurs

is an output letter of the i-th component channel. Thus,

H(z|ly) = o. (16)

Notice that we can also consider Z as indicating which of

the L component channels was selected for transmission so that

Pz(i) =q (17)

and, moreover, 2 is statistically independent of the input X.

It follows from (16) that

H(YZ)

H(Y) + H(2|Y) = H(Y)

and thus that

H(Y)

H(YZ)

H(z) + H(Y|2)

L
= H(2) + I H(Y|2=1) P, (1)

i=1

= H(Z) +
i

o

H(Y|2=1i) q, - (18)
1

= X Y)s pln - A

N B

I
i

=)

But (16) also implies e
P U VI SRR B R SN /
el = o o (X 7)
4 ~)
HKZ\AJ Lori T
and thus -t
H(YZ|X) = H(Y|X),

which further implies

H(Y|X) H(YZ|X)

H(Z|X) + H(Y|X2) | L(ZWX)— H(Z)

* §-WOEPBH &

L
H(zZ|X) + £ H(Y|X,2=i) qy
1=

1

= H(Z) + I H(Y|X,Z=1i) q, (19)
=] 1

1

where at the last step we have made use of the fact that X

and Z are independent. Subtracting (19) from (18), we obtain

I(X;Y) =

[H(y|z=1) - H(Y|X,2=1)] q. (20)
i

1

i~

Let Ii(X;Y) denote the mutual information between the input and
output of the i-th component strongly symmetric channel when this
channel alone is used with the same input probability distribution
P(x) as we are using for the symmetric DMC itself. We first

note that, by Theorem 2,

I, (X3¥) < Cy (21)

with equality when P(x) is the uniform distribution. Moreover,
we note further that
I, (X3¥) = H(Y|2=i) - H(Y|X,2=i)

because lez(xli) = Px(x) by the assumed independence of X and Z.

Hence, (20) can be rewritten as
L
I(X;Y) = £ I,(X;Y) q.. (22)
. i i
i=1

But the uniform distribution P (x) simultaneously maximizes

each Ii(X;Y) and hence achieves

C = max I(X;Y) =
PX i

([l
0
Q

. g, (23)
;] 17

as was to be shown.

It is important to note that to go from (22) to (23),
we made strong use of the fact that one input probability
distribution simultaneously maximized the mutual information
for all the component channels. Thus, the relation (14) will
not hold in general when we decompose a channel into non-

symmetric channels selected according to certain probabilities.
L
|In general, =

q; Ci will then be only an upper bound on
i

1
capacity.]

Hote: The reader is cautioned that the terminology we have

used in discussing channel symmetry is not standard. Fano uses
the terms "uniform from the input" and "uniform from the output”
for what we have called "uniformly dispersive" and "uniformly
focusing", respectively, and he uses "doubly uniform" for what
we have called "strongly symmetric". Our definition of "symmetric"
coincides with that given by "Gallager" who, however, did not

give the interpretation of a symmetric DMC as a collection of

strongly symmetric channels selected according to certain
probabilities.

J

o |

{

=

p— v

==

h O & e e G O G & a O

=3

C. The Data Processing Lemma and Fano's Lemma

In this section, we introduce two general information-
theoretic results that we shall subsequently apply in our study

of channels, but which have many other applications as well.

The first of these results speaks about the situation shown
in Fig. 5. The two "processors" shown in this figure are complete-
ly arbitrary devices. They may be deterministic or only proba-

bilistic =-- for instance each could contain one or more monkeys

flipping coins, the results of which affect the output. The "black

boxes" may have anything at all inside. The only

thing that Fig. 5 asserts is that there is no "hidden path" by
which X can affect 2, i.e., X can affect 2 only indirectly through
its effect on Y. In mathematicgl terms, this constraint can be

expressed as
P(z|xy) = P(z]y) (24)

which states simply that,when y is given, then z is not further

influenced by also giving x.

Black z | Processor YI | Processor | X | Black
Box No. 2 No. 1 So%
No. 2 No. 1

Fig. 5: The conceptual situation for the Data Processing Lemma.

[A more elegant way to say the same thing is to say that the

sequence X,Y,2 is a Markov chain.]

The Data Processing Lemma states essentially that information
cannot be increased by any sort of processing (although it can

perhaps be put into more convenient form).

Data Processing Lemma: When (24) holds, then

I(X;2) € I(X;Y) (25a)
and
I(X;2) £ I(Y;2). (25b)

Proof: We first observe that, because of the definition (1.19),

(24) implies
H(z|XY) = H(z|Y). (26)
But our interest is in
I(X;2) = H(2) - H(2|X)
< H(Z) - H(zZ|xXY), (27)
where we have used the fact that
H(Z|XY) < H(zZ|X)
by Corollary 2 of Theorem 1.2. Now u%ing (26) in (27), we obtain
I(X;2) < H(2) - H(Z|Y) =
= I(Y;2)

so that (25b) has been established.

To establish (25a), we first use Problem 1.8 and start

from
I(X;2) ¢ I(X;Y2) =

I(X;Y) + I(X;2]|Y)

I(X;Y) + H(Z|Y) - H(Z]|XY)

I(X;Y)

as was to be proved, where at the last step we have made use

of (2¢).

Now, for the first time in our study of information theory,

we introduce the notion of "errors"”. Suppose we think of the

i) EED

)

&

=3

=

=3

-

random variable U as being an estimate of the random variable

-

U.

For this to make sense, U needs to take on values from the same

alphabet as U. Then an error is just the event that U $ U and

the probability of error, Pe’ is thus

-

- L
Pe P(U £ U).

(28)

We now are ready for one of the most interesting and important

results in information theory, one that relates Pe to the

conditional uncertainty H(U|U).

Fano's Lemma: Suppose that U and U are L-ary random variables

with the same alphabet and that the error probability Pe is
defined by (28), then

h(Pe) + Pe logz(L-l) > H(U|U)

-

where the uncertainty H(U|U) is in bits.

Proof: We begin by defining the random variable Z as the indicator

random variable for an error, i.e.,

0 when U = U

o3
i
)

1 when U % U,
which of course implies by virtue of (28) that
H(Z2) = h(Pe).
Next, we note that

H(U|U) + H(Z|UU)

H(Uz|f1)

H(U|U),

as follows from (l1.33) and the fact that U and U uniquely

determine Z. Thus

(29)

(30)

w» e

-

-l e

H(U[G) H(UZ|6)

H(z[U) + H(U|UZ)

H(Z) + H(U|GZ) (31)

A

where we have made use of (1.21). But

H(U|6,z=0) = 0 (32a)
since U is uniquely determined in this case, and

H(U|U,2=1) < log, (L-1) (32b)

since, for each value of U, there are only L-1 possible values

of U when Z = 1. Equations (32) imply

A

H(U|UZ) S P(z=1) log, (L-1) =

Pe 1og2(L-l). (33)

Substituting (30) and (33) into (31), we obtain (29) as was

to be shown.

We now turn to the interpreta;ion of Fano's Lemma. First,
we observe that the function on the left of (29) is the sum of a
convex N function of Pe and a linear function of Pe' In Fig. 6,
we have sketched this sum function [which is also convex M in
Pe]. The important observation is that this sum function is

positive for all Pe such that 0 < Pe < 1.

h(Pe) + Pe log2(L-l)

log2IJ_- —_ — _; —_—
log, (L-1) ‘f" - - -
| l
| |
| |
M :
° L-1 1 ©
L
Fig.

6: A sketch of the function appearing in Fano's Lemma.

8y

==

=

[

e O on o & B e

J

. J .

Thus, when a positive value of H(U|U) is given, (29) implicitly

specifies a positive lower bound on Pe’

Example 5: Suppose that U and U are binary-valued [i.e., L = 2]

and that H(UlU) = 1/2 bit. Then (29) gives
h(P)) » 1/2

or, equivalently,
.110 § P_ € .890.

The fact that here (29) also gives a non-trivial upper bound
on Pe is a consequence of the fact that the given H(Ula) exceeds
the value taken on by the left side of (29) when Pe = 1, namely
logz(L-l). For instance, with L=3 and H(U]a) = 1/2 bits we would
obtain from (29)

h(Pe) + P> 1/2

which is equivalent to

P_ » .084.

o L L]

The trivial upper bound Pe < 1 is now the only upper bound that

can be asserted.

A review of the proof of Fano's Lemma will reveal that

equality holds in (29) if and only if the probability of an error

given that U = u is the same for all u and when there is an error

(i.e., when U # U), the L-1 erroneous values of U are always equally

likely. It follows that (29) gives the strongest possible lower

bound on Pe' given only H(U|U) and the size, L, of the alphabet

N

for U.

D. The Converse to the Noisy Coding Theorem for a DMC

We will now show that it is impossible to transmit
"information" "reliably" through a DMC at a "rate" above its
capacity. Without loss of essential generality, we suppose that

the "information" to be transmitted is the output from a binary

symmetric source (BSS), which is the DMS with PU(O) = PU(l) = 1/2
whose "rate" is H(U) = 1 bit per source letter. It is common

practice to call the letters in the binary output sequence

Ul’ U2, U3, ... of the BSS information bits because each carries

one bit of information, although this is a slight abuse of
terminology. The full situation that we wish to consider is shown

in Fig. 7. Notice that we have assumed that the DMC is being

used without feedback. Thus, by Theorem 1,

N
P(yl,...,lexl,...,xN) = I P(y,]|x,)

which in turn implies

H(Y....Y |X

1 N

0
K-
i
<
]

l...Xﬁ) L 3 1% (34)

Ul...UK Yl...YN Xl...XN 9] U,...

Information \
Destination Decoder

1o Yk " Ukerp

- annel - MC < | Channel - | Bss
encoder

Fig. 7: Conceptual Situation for the Noisy Coding Theorem.

Next, we note that Fig. 7 implies that the decisions about
the first K information bits are made by the "channel decoder"”
using only the first N digits received over the channel. The
"channel encoder" uses the first K+T information bits to determine

the €irst N transmitted digits for the channel -- normally one

© UGS v

LA 1T

Egse=y

J

L

= 5 W 3

=3

G

= a8

BEE e 0 e

would expect T=0, but we do not wish to force this choice on
the encoder. To describe the situation shown in Fig. 7, we will

say that K information bits are sent to their destination via N

»
i
uses of the DMC without feedback. Notice that the rate of trans- !
mission, R, is
R = K/N bits/use (35)
where "use" means "use of the DMC“.
If we consider the "Channel Encoder" and the "DMC" in Fig.7?7
as "Processor No. 1" and "Processor No. 2", respectively, in
Fig. 5, we can use the Data Processing Lemma to conclude that
. < .
I(Ul"‘UK"’UK+T' Ul...UK) < I(Xl...XN, Ul...UK) .
which further implies
I(Ul...UK; Ul...UK) <~I(Xl"’XN; Ul...UK). (36)
Next, we consider the "DMC" and the "Channel Decoder" in Fig. 7
as "Processor No. 1" and "Processor No. 2", respectively, in
Fig. 5 so that we can use the Data Processing Lemma again to
conclude that
I(Xl...XN; Ul...UK) < I(Xl...XN; Yl...YN). (37) |
3
Combining (36) and (37), we obtain the fundamental inequality 2
I(Ul...UK; Ul...UK) < I(Xl...XN; Yl...YN). (38)

To proceed further, we next note that

I(xl...x ; Y Y..)

NP f1eeeiy H(Ylf°'Y

| o H(Yl...YNIXl...XN)

il
o
]

N
L..Y) - I H(Y lxi) (39)

where we have made use of (34) . But, from (1.33) and Theorem 1.2

it follows that

<
A
i o

H(Yi)

which, upon substitution into (39) gives

N
. < - =
LKy Xygs ¥y...¥) € I [H(Yi) H(Y, |x)]
i=1
N
= I ;
oo TXgE Yy
i=1
$ NC

(40)

where we have made use of the definition of channel capacity.

Combining (38) and (40) gives

-

. <
I(Ul-ouUK’ Ul.'tUK) ~ NC,

which is both pleasingly simple and intuitively satisfying.

Finally, we need to consider the appropriate meaning of

"reliability". If K were very large (say 6 x 1023), we would not

be distressed by a few errors in the decoded sequence Ul,...UK.

Our real interest is in the fraction of these digits that are

in error, i.e., in the bit error probability

;s (42)
1 ei
where we have used the notation

Py = P(U, $ u,).

(43)
Our task is to show that, when R > C, there is a positive

lower bound on Pb that no manner of coding can overccme. As a

(41).

C 8 ot Oald whee:

)

T

Sdni s

[
[
[

J

—

L

—

(

&

£=3

[
L

= h(Pb), (49)

where we have made use of the definition (42) of P Substituting

b‘
(49) into (48) now gives the eloquently simple result

C
> - =
h(Pb) > 1 R ° (50)
Thus, ‘we have at long last arrived at:
The Converse to the Noisy Coding Theorem: If information bits
from a BSS are sent to their destination at a rate R (in bits
per channel use) via a DMC of capacity C (in bits per use)
without feedback, then the bit error :probability at the
destination satisfies
-1 C .
Pb>h (l-ﬁ)'lfR>C-' (51)

[Here, we have written h-l to denote the inverse binary entropy
function defined by h-l(x) = min {p:h(p) = x}, where the minimum

is selected in order to make the inverse unique.]

Example 6: Suppose the DMC has capacity C = 1/4 bits/use and

that the BSS is transmitted at a rate R = 1/2 bit/use. Then
(51) reguires

-1
Pb >h " (1 - %) = ,110.

Thus, at least 11 % of the information bits must be decoded in-

correctly. [Note that we could also have used (50) to assert

that Pb < .890. This necessity can be seen from the fact that, if

we could make P, exceed .890, we could complement the decoder

b

output to achieve P, less than .llO.]

b

- i @ @00 .

LY B X

4.25 -
first step in this direction, we note that -
H(Ul...UKIUl...UK) = H(Ul...UK) - I(Ul...UK,' Ul...UK)
= K = I(U)...0; U ...U) L3
> K - NC = ;ﬂ
v 0
= N(R-C) (44) §
where we have made use of (41) and (35). To proceed further, -
we observe that ¥
- - K - -
H(Up...U|U . LUp) = iil H(U Uy e Op UyelU,) }
< 5 H(U {I
€ L H(U,U,) (45) |
i=1
since further conditioning can only reduce uncertainty. Sub- [
stituting (45) into (44) gives ‘ [
K - o
I H(U;|U)) 3 N(R-C). (46) .
i=1
We can now use Fano's Lemma to assert that D
K - K ﬁ
£ H(U,|U,) ¢ £ h (P_,) (47) l
T TS
™
where we have used the definition (43) . Combining (47) and &
(46), we have =
K L/
1 N _ 3
K - B(Pgy) > g (RC) = n
i=1 ;
C : o
=] - ﬁ ' (48) =
)
where we have again made use of the definition (35). The final
step is to note [:s'ee Problem 4.4] that, because h(p) is convex N 3

L

=

2|

25

=3

=3

l':

|

=1

We see that, whenever R >C, (51) will specify a positive

it - G

lower bound on Pb that no amount of encoder and decoder complexity

can overcome.

The reader may well wonder whether (51) still holds when
feedback is permitted from the output of the DMC to the channel
encoder. The answer is a somewhat surprising yes. To arrive at
.40), we made strong use of the fact that the DMC was used with-
out feedback -- in fact (40) may not hold when feedback is

present [cf. Problem 4.5]. However, (41l) can still be shown to

< »+0 00 G- n.

hold [cf. Problem 4.6] so that the converse (51) still holds
true when feedback is present. This fact is usually stated as

saying that feedback does not increase the capacity of a DMC.

This does not mean, however, that feedback is of no value when
transmitting information over a DMC. When R <C, feedback can
often be used to simplify the encoder and decoder that would

be required to achieve some specified Pb.

wy AR

E. The Noisy Coding Theorem for a DMC

Now that we have seen what is impossible to do, we turn to
see what is possible when one wishes to transmit a BSS over a

DMC. We consider here block coding in which each "block" of N

channel digits is determined by a corresponding "block" of K
information bits. The decoder makes its decisions on a block

of K information bits by an examination of only the corresponding
received block of N digits. The rate R, and the bit error

probability, Pb’ are already defined by (35) and (42), respectivel

0 A ﬂlai.. S

We now introduce the block error probability, P which is

BI
defined as

Py = P(U;...U, e Up---Up). (52)
Notice that, when a block error occurs, therxe must be at least

one bit error but no more than K bit errors among the K decoded

information bits. Thus, it follows that

or, equivalently,

Pb < PB < KPb. (53b)
We have earlier argued that Pb is the quantity of real interest,
and in fact have proved that Pb cannot be very small when R > C.
We note from (53b) that this also implies that P, cannot be
very small when R >C. We now want assurance that Pb can be made
very small when R'<C, but we will in fact get the even greater
assurance that PB can be made very small Eas this will by (53a)
also imply that Pb can be made very small.] To get the strongest
results, one should always use bit error probability in con-
verses to coding theorems, but always use block error probability

in the coding theorem itself -- and this is what we shall do.

The Ngisy Coding Theorem for a DMC: Consider transmitting in-

formation bits from a BSS to their destination at a rate R = K/N
using block coding with blocklength N via a DMC of capacity C
(in bits per use) used without feedback. Then, given any € > O,
provided that R <C, one can always, by chooging N sufficiently

large and designing appropriate encoders and decoders, achieve

P, < €.

fomE R e e

2

s 0 &8 £

[

|] L]

|
J

—
L

This theorem was the "bombshell" in Shannon's 1948 paper.
Prior to its appearance, it was generally believed that in order
to make communications more reliable it was necessary to reduce
the rate of transmission (or, equivalently, to increase the
"signal-to-noise-ratio", as the well-educated communications

engineer of 1947 would have said it.) Shannon dispelled such

< @ s0Q 6 @it -

myths forever -- in theory, they have been slow to die in practice!

Shannon showed that, provided R <C, increased reliability could
be purchased entirely by increased complexity in the coding

system (with no change in the signal-to-noise-ratio!)

We shall not now give a proof of the above theorem despite
its paramount importance in information theory and despite the
fact that it is not particularly difficult to prove. There are
two reasons for postponing this.proof. The first is that, with-
out some indication of how large N needs to be for a given &€
(i.e., how complex the encoder and decoder need to be to achieve
a given reliability), the theorem lacks a vital practical con-
sideration. The second is that the proof of the theorem will be
much more meaningful after we have further developed our under-
standing of channel encoders and decoders, as we shall do in

the next chapter.

cA 4@

4.30

35-167 ADIT I 12.1.84

Supplementary Notes for Chapter 4
CONVEXITY AND JENSEN'S INEQUALITY

A. Functions of one variable
Intervals may be of three kinds:
(i) closed (contain both endpoints): (@, b] where a £ b,
(ii) open (contain no endpoints): (a, b) where a < b
or (a,w) or (-w b) or (-, o),
(iii) semi-open (contain one endpoint): [a, b) or (a, b]
where a < b or [a, %) or (-m b].
The length of the interval is b - a, or o, as appropriate.
In what follows,‘ﬂ denotes an interval. of positive
length (or length oo) and f denotes a real-valued function
whose domain includes 29.
Definition 1: f is convex-(] (also called "concave") on <t
if, for each interior point X, of J » there exists a real
number ¢ (which may depend on X,) such that

£(x) € f(x,) + c(x-x,), all x in <. (1)
The convexity is said to be strict when the inequality
(1) is strict whenever x # x_.

o
Pictorially:
™ £(x) + elx=-x)
//,::::>\\ﬁk\\\§ .
ToE(x) : — I
'. S
[! — SR
a X b

For any choice of X0 the function lies on or below some

line touching the function at x = Xge

Remark 1: The convexity will be strict unless and only

unless f is linear (i. e., of the form mx+d) on some subinterval

of & of positive length,
The following test covers most functions of interest
in engineering applications.

Test for Convexity: If f is continuous in zpand " exists

and is continuous in the interior of d , then £ is convex-)

1

n <=t if and only if £"(x) € O at every interior point x of J.

Moveover, the convexity is strict unless and only unless

£9(x)= 0 for all x in some subinterval of <J of positive length.

r

J

== B3 =

& Wi W

B e & &8

o |

B |

Proof: For such a function f as hypothesized, Taylor's
theorem implies that for any interior point X of Qﬂ and
any x in h&, : .

£0x) = £(x) + (x=x,)£'(x) + F(x-x,)38" (x,) (2)
where x; (which may depend on x) lies strictly betwegn X
and x, and hence xl-fs an interior point of <. Thus,
when f" is at most O for all interior points ofd, (2)
implies (1) and thus f is convex-/). By Remark 1, the
convexity will be strict unless and only unless f" vanishes
in a subinterval of of positive length.

Conversely, suppose f" is positive at some interior
point of cg. The continuity of f" implies that one can
find a positive length subinterval éy of ¥ such that £ is
positive everywhere ha}ﬂ Hence -f is strictly convex-[)
on 3’. Thﬁs, when Xy is chosen as an interior point ofJ},
inequality (1) cahnot hold for all x in)/, much less for
all x intJ s so [cannot be convex- ().

We will say that a random variable X is essentially
constant if there exists a value x of X such that P(X=x) =1

Jensen's Inequality: If f is convex~[) on m& and X is
a random variable taking values in c’, then

E[f(x)] = £(E[X]). (3)
Moreover, if f is strictly convex- /) onw}, then the inequality
(3) is strict unless and only unless X is essentially constant

Proof: If X is essentially constant, then (3) holds with
equality for any f so we may suppose hereafter that X is
not essentially constant. This implies that X, = E[X] is
an interior point of <¥. Thus, (1) implies that for some c

£(Xx) 2 £(E[X]) + c(X-E[X]). (4)
Taking expectations in (4) immediately gives (3). Moreover,
if £ is strictly convex-f), the fact that P(X=E[X]) < 1
implies that the probability that (4) holds with strict
inequality is greater than 0 so that taking expectations in
(4) yields E[r(x)] < £(E[X]).

- SPWAES A - .

o oD Win

Definition 2: f is convex-U (also called '"convex") on L

if -f is convex-/1 on J (or, equivalently, if Definition 1

is satisfied when the direction of inequality (1) is reversed.) -

Remark 2: f is both convex- (] and convex-{ on ol if and
only if £ is linear on & (i. e., £f(x) = mx + 4 for all x in.tl.) =

The reader is forewarned that the above definition of

convexity, despite its convenience, is not that most often

used in information theory. The more usual definition is i
the characterization of convexity as given in the following L
theoremn. -
Theorem 1l: f is convex-{f] on N if and only if for every Ll

X1 and X5 in ‘=‘ ’
0f(xq) + (1-8)f(x,) & f£lax +(1-8)x,]for 0<O< 1. (5) :

The convexity is strict if and only if inequality (5) is

strict whenever x; # X5

f£(x)
A f[GXl+(l-G)X2]

Pictorially: 5

DEY R X R

or(x) H(l-0f(xy) __ . . "
. . i

[
[
; ! 0
a xi ox, F(1-8) x,%%, \ I
!
[
[

The function always lies on or above its chords.

Proof: Suppose that f is convex-/1 on . For X1 Xo and

@ as specified, define the discrete random variable X such
that X takes on values X, and Xq with probabilities @ and

1- @ , respectively, where we may assume that X1 # Xge Then
Jensen's inequality gives

E[f(X)] =@r(xy) + (1-0)£(xy) & £(E[X]) = £[8x+(1-0)x,]
so that (5) indeed holds. Moreover, Jensen's inequality U
gives strict inequality here if f is stricbly convex-/).
Conversely, suppose that f is not convex- oncl.
Let be a rcint in s where (1) cannot be.satisfied, i.e. where

we cannot place a straight line passing through the function at

X o= Ry that lies everywhere above the function. But then there

B R

=

=

- OCE T S

= B2 &=

must be some such line, f(xo) + c(x-xo) that lies below

0
the function at some points Xq and Xy in »! such that

xl < xO < Xo0 i.e.,
)
f(xl) > f(xo) + c(xl-xo) (6a) :
and f
f(x2) > f(xo) + c(xz—xo). (6b)

Now define 6 by
X, = exl + (l-e)x2 (7)
which ensures that 0 < 6 < 1.

Multiplying (6a) and (6b) by 8 and 1-9, respectively, then
adding gives
ef(xl) + (l-e)f(xz)

v

£(x_) + c[@xl + (1-0)x, - x_] =
= f(X) by (7)

= f[bx + (1-8)x,] again by (7).
Thus, (5) does not hold everywhere in <.

B. Functions of Many Variables

We consider real-valued functions of n real variables,
f(x) where x = (xl,xz,...,x) € R

A subset af of R" is said to be a convex region if, for every
pair of points X, and X, in J’ the line betweeen %, and X, lies
entirely in hj In other words, %(is a convex region if, for every
pair X1 and X, in J ex + (1~ e)x is also in J for all 6 such

that 0 < 6 < l For n = l J-ls a convex region if and only if d

is an interval. For n > 1, convex regions are the natural
generalization of intervals.

B civfewdy w -

Definition 3: f is convex-/\ (also called "concave") on the
convex region‘J if, for each interior point X of.J there exists
ace R (which may depend on X) such that

£(x) ¢ £(x) + c(x - x), all x in 4. (8)

The convexity is said to be strict when the inequality (8)
is strict whenever x % X .

In words, f is convex-N\ if, for any choice of Xoyr the
function lies on or below some hyperplane that touches the
function at x = Xx,.

Jensen's Inequality: If £ is convex-MNon the convex regionzi

and X is a random vector taking values in J,then
E(£(x)] « £@E[x]. (9)
Moreover, if f is strictly convex-{\ on J,then the inequality (9)

is strict unless and only unless X is essentially constant.

Definition 4: f is convex-{/ (also called "convex") on the

convex region'g if -f is convex-N\ on J (or, equivalently, if
Definition 3 is satisfied when the direction of inequality (8)

is reversed.)

Theorem 2: f is convex-N\ on the convex region J if and only

if for every X4 and X, in.g,

Bf(xy) + (1-8)£(x,) < £[6x; + (1-8)x,] for 0 < 6 < 1. (10)

The g¢onvexity is strict if and only if inequality (10) is strict
whenever x, ¥ x,.
Note again that the meaning of (10) is that the function

always lies above or on its chords.

I

==

-

=3

B

=

-

_— 2=

=

CLAIM:

4.35

Supplementary Notes for Chapter 4

ql' q2’ ! qL

I— Txm T T TT T a) —————— 1

X DMc Y 5 :
! : TN
I X, ‘Y(z) N |

’ \ Dy

l (&)) L fj T '
[X_»D P Y() -~ O I
| i I
[T i
[f?;(i) = 9. Z |
' A=12,.., L Oms {

ASSUMPTIONS: (1) All component DMC's have th
a=ald

—— emm s s o

_ A2

(’-\B(j) =¢, i

5 =3l 52

(L)

(3) X and 2z are statistically independent.

€ same input alphabet:
- AL

(2) The component bMC's~have

disjoint output alphabets:
(1)
B

CONSEQUENCES: (4) The composite channel is a DMC with transition

probabilities

(1) B (i)
Pyix®y " lag) = qp PY(i)Ix(i)(bj lay) -

(5) Y uniquely determines Z.

Proof of Claim:

H(YZ) = H(Y) +

= H(Z) +

Thus, H(Y)= H(Z) +
= H(Z) +

= H(Z) +

< (1)
I(X;Y) = 7§ q; I(X;Y).
i=1

H(z|Y) = H(Y)
H(Y|Z).
H(Y|Z)

L
! H(Ylz=1)P (i)
i=1 z
L
(i)
Y H(Y)q; -

i=1

by (2)

by (5)

~F

Similarly,
H(Yz|X) = H(Y|X) + H(2]¥X)
H(z|X) + H(Y!|X2)

H(Y]X) by (5)
H(z) + H(Y|XZ) by (3).

Thus,
H(Y|X) = H(Z) + H(Y|X2)

L
H(z) +) H(Y|X,2=1)P, (i)
i=1

L (1)
H(z) +) H(Z' ' IXq,.

Hence, we have

I(X;Y)

H(Y) - H(YIX)
L .
y q.[H(Y(l)

i=1 *

%
q.I(X;Y

i=1 't

y - 5Pz

(i))

as was to be shown.

) — | !
"I nama o 1 © Y QI
Example: ! 1 e g [T TS
] 7 !
)<'u —73 Y(ﬂ) 8’——*
\ O ~
- < A § &
{ 1 1 O
' L_, |
21
pms 1
........... 4
The composite channel is the following DMC:
(The BEC !)
1 o= - 1
1-$

The cemwposite channel may be drawn more suggestively as the
following cascade of channels:
$ - - - O

—— o e——
Channel C.Ompanenf
Cmlmetirn c_\-\f\nn".ls

ER Lt

e S X LN

— = B3

ey —|
G = o @0 oW O

A | t]

P eS| g -

4.37

Definition: A DMC ig symmetric

if it can be created by L strongly

symmetric DMC's with selection Probabilities ql, qz, .y qL.
Theorem 3: For a symmetric DMC,
L
C = _f q C, .
i=1
(where Ci is the capacity of the i-th strongly symmetric DMC and
q; is its selection pProbability) and PX(ak) = 1/K, all kK, achieves
capacity. L
Proof: I(X;¥) =] q, 1(x;¥'Y) by the cratm,
i=1
L (1) L
C=max I(X;Y) ¢ | q, max I(X;Y) = J q.cC
. i . i 7i
P i=1 P i=1
X X

with equality if andg only if there is a PX that simultaneously
maximizes I(X;Y(l)), I(X;Y(Z)), ...I(X;Y(L). But since each componen
DMC is strongly symmetric, Px(ak) = %, all k, is such a Px. This
Proves the theorem. :
ALGORITHM FOR DETERMINING IF A DMC IS SYMMETRIC:

c s - : . (1) (2) (L)
l. Partition the output letters into subsets B , B 1eee,; B

such that two output letters are in the same subset if and only

if they have the "same focusing" (same ordered list of transition

pProbabilities from the K input letters). Set i = 1.

2. Check to see that all input letters have the "

(same ordered list of
g (i)

same dispersion"
transition pProbabilities) into the subset
of output letters. If not,

If yes, set g
(1)

stop, the DMC is not symmetric.
i €qual to the sum of the transition probabilities

into B from any one input letter.

3. If i =1, stop. The channel is symmetric and the selection

probabilities qq Qor eeey qr, have been found. If i <« L, increa

i by 1 and return to Step 2.

e

NN Re «;.

ApIT L 23.1.%¢
SUPPLEMENTARY NOTES - CHAPTER o

| S“‘.’PPO‘SE U = (X,7) where X and T

‘{"a.ke Va lwes In {a.,_,w, a-/< } and {6““7 67})

Y‘eSPecf‘zi/c(y.
N otation -
y = [U“..., UL1 w o= fug,., u'l..]
= X, = [, 40), 0 (%, 40)]
= (x,4)
.a.)f = [Xg) Xl.] X = [7‘1):57‘).]
.‘f- = ['T;)...) YL] _'é = fﬂr)"'llal.]'
Ec)u_r'va/'sn'/' DMS 's:
DMS |
P k“"vc
U
pms > X
PXY —> YL
DMS] Dmc «
- X
| Py ‘
i ——— I
DMC ¢
P pmsS
Y I X R, |
| ¢

« 4w

A e Nou'OR wve -

VI |

-2~

haL(CX,ﬂ)> = Nnumber of Sccufrfrence 3

A of (a,b) In (%,4) =
[[Cx,,g,))..., (xLJgL)]
: If uw = (%, 4) is S--/:LJPI'C‘Q/) then

¢

G-OL R, @b s ny (Gy) s (1+)L P (ab) .

=

N ot at
= bZhab((oé3%)) = na.c‘é)-

Thu&'j Jummina over 6 fn the aéoVe

lheﬂua./:"fa 3[!/:5
(1-€)L F,(6) 5 n,(z) < ¢ree]L £ ca.

a

We have pr‘oc/cJ.

Pr‘gperTg 9 of [ypreal, Je7u<nCe: A
U = (%Y4) is an g-typical U Sequence
of /eng‘l% L where U= (XY7), then

z I'S an g- Bflfa/ X J‘e1u<-'7<'e of /s‘njﬂ; L) 47)«0

& }

j IS an 5-73,01':4/ 7 Sequence of /e»gyf/; L.

i From the "DMC Oithout feedback ” formela,
we }')a.ve

y L

Gy (xle) = L By i)

- Thus

1 £ (x, ﬁ) s an €-7:7/9fca./ (,X, Y) .s'e7ucnce,

f | (|
| J i J
.

ey LI

—3—
Then
L
= P . :
P’S.'I (3_‘[3_) E)il‘i’(x",'é)
T7 CCZJ))
= T [P,)] ==
a b
(t-¢)L P, (a,6)
$ TI-—LT [P’ C-f)] X, =
(1-)LP, (@8 log, P (%)
= { 7T Z)(Y ? el
a b
L EF 0L Bpla gy G
- (1-£)L H{XIY)
— z]

We have prowsd:

Pf‘opgﬂ'hj 5_ ajc 7_:7’0 ica:/ Se?uences . I?c
(x) g) 1S an 2-7:7,::'(4/ (XJT’_} : Jc7u€'7<c
of /:?057% L, then

2‘C1+£)L HXIT) < @ ’

~(1-¢)L H(XI'Y)
L (mig) s 2 ORI

An immediate cons equence 15 the fa[/at.)l'ng;

Prw)?l‘er‘fy L st EPI’CG./ fe7u.en<d.?‘. If y /s

any f- 7"3/:120., r sequence of length L, Then

Hie number of sequences X such that
C%,4) 1s an g1y pical (X,) Sequence of
leagth L 15 at most 2 (rrg) LH (X 7’/.

[
[.

LS

S

SCE X 2 TN

—

-_L,'..

» Ranclom Cod/'ngl a la Shannon
i : o
| Given: A rate R where R < C.
[-- LK = number of leffersc (n channel input a/PAaLe‘T'.]
T Infe. f_ﬁ Encoder | DMC "De'.::fer.i Info.
i Source - Dest.
WY SR T
! . I IR R B OO —\
]) DMS 1 2.(1 ‘
’ | QX ‘
' DMS 2 X2 !
' Qy l
[. l
)) |
[| [oms M| X
| QX |
bl o i T el |
Rand om Ex/:erimcrﬂ" for
i ChOOJ/nS , fl\c.' C odle
E 2(.‘ = [XL,, Xd—.Z)'") XAN]
AssumpTions: VR Choose an g, .O0< £ ZLR K
3) M= T2, R p
N :
1 = Cole nate & LMy L322 T g
| ' N 7 N '
i and, M-1 < 2NR.
: (2,) Z +dkes Vd(U-QJ /.f) {7)2J-") M }.
- (3) A=¢ = X = _)_(‘. 3
- <"’) Dé’cz.u:l:?ng Ru.ltf . 7’; _7, = _3 Lol _/.;Y,g' N 'l:(.'

for 1,'=1,Z)...,I"), choore Z as The fl;‘:%

index 9. Such MY (xi,g) Lo S-'/‘-naical.
A

CCHaose 21 if no such g exi.rf:.)

p— Cmmm rme—y
i J L s

- Jo.1.76

{
(Continuation of ADPIT I, SUPPLEMENTARY Y
NOTES - CHAPTER Y)

(5) QX S a Capacif/'g~achicvmj /nput

pr‘aéaé-'/ﬁ"; distribution for the D/YICJ /'.e.) :
f?(:-QX = TX;7r)=C. |
Notation:

E = cvent that 2+ 2 (ie, block error).

F = eveat that (X 7) 1S not an
e-Typical (X7) Scquence of length N.

A, = event that 'DMS 4" emifs X;
 Such that (X v) is an £-Typical

(X,7) Sequence oF length N
N

Q_X_(g&) = nl’L Ry (%n).

Notice that % = implies ;
omsi] X = X | X
QX 2 - DMC - 7[
s, [B (21 = Qa) | iene m .
X 1% s
e since X and [
—> (7‘) = QX (%) = TQCX) % are l'nc!efcnden? [

anck, since the DMS s usco\ Without fecdback,
R

[I(X)= Zr(x‘”) L

[
[__

—é.—
§ Note that F© is +the event +hat (X,r)
. is an é'-f:ﬂ?ic.@/ (X,T) Sequence

If FC opccurs and 2= L, We cannot
make a c{)cca.!(ng errorr unless one
L or more DMS 4 Y with] F< emits

i a Sequence X such that (X;,7)
] is also an 5"’3;"’?4/ (X,7) Seguence,

| M

| PEIF,%=2) s P(U AjlFe 2-4)
£

' y

(wnion Lounao < Z P(A1 , FC) 2 =-i.)
4=1

[| 3T« %
L But, for any 4 F J.j §
} POIFS, 220, Y29) = 2 P(x;=xIFze0,Yxy)
| Z:(%49) s N
Q £- typicd

{ = Z Xy ()

Xi(x%4) s =
- -%,4)
| £"f3fc'c-d

(P rafcr‘rfé‘.s LI and 1

- N(1-g) H(X
- Typical Seq uenccs) S Z 2 ¢ee))
" | x: (x9)s
L | £- tj?s‘ct-(

(Pr‘opcr"“\} L of 2 N(t+€)HXI Y)Z =N (1°£)HO<) -

A

|
.. 7‘3 PJ'@ | s 87 wer? ce:) .'
i _ Z-M[ch)—H(le)JWz [HE)+ H

—
\ J

FNIGT ¢ N [H) + Hx1v)]

-NC ZW [H) + Hxv)]d

2

- R
But

H(x) + HXIT) ¢ 2 H(X) $ 2(g,K
Where K= number of channel rnput l<Ttzrs.

Hence

Pa;IFS B=i, Ty) s 2 "¢ TN CaK

This bound s ihdependent of y so
PCAj|Fe, 3mi) s g NOr2Nels K

THes,
PCEIFE 2=4) < Z PCA; 1% =<)
a'-‘r'*—
< (M-f/) 2"1\/C +2ANE (.oa‘K

< 2NR-NC+2M£ byzK:::
Z-N[C-.R -2eleg, K]

This bound s independent of { so that
P(EIFC) < N[C R~ 2&‘(4, KJT

B‘a. P/\a?d\g-é 2’._.? cai X,t.?,u-»«aa

KJ
P S
[(F) s N g% £ain

Where Jd = nNumber of ;Aannc/ Ou'/';:u—?‘ /tters

am& Fm“;. = J‘ma//c.d' nan - zero Vd_/ue oF

By (1) = Qe Iy (41,

JFe

R SR LR 2B A

L

o=

& 2

=3

-

L | . d []

J

L

J

!

i}

_9-
ﬁha//gJ we note Fhat
P(E) = PLEIF<)P(Fe) + P(EIF)P(F)

€ PCEIFS) + P(F)
So "’L\aj'

-
~N[C-R-2¢g/Loq,K] KT

[ch)s 2 ? . NE*E,.,
Bt we chose & so that O< €< QCL;:K'

=> C-R-2£Meg, K >0
and thuas

Lo P(E) = o.(

N —=> <o ..

What Is the meqnfng of P(E.)?

Let o (2,2, ,2,) e the block error
fr‘aba.bllf"f’g for The code X

1) 225, Z,- In

other words, .
Fé (2_4,)---, ZM) = P(E! 'ergf)"" 2-(1\4 ='3M)-

771u$,)
PCE) = 2. 2 B (2,2, P33, %, o5,)
x, z,, —" m “m

)

Pr‘o\a. ot the code
pA X

=11 =m
Thus PCE) Is the "a.v:r'cuje PB" of all

paSS':Lle Codes of /an# N oth M codewords,

B I N 8 7)

Cel A i b n

—-7_

(DO~ K -

But there must be at [east one (ol oag Hen,

C«“li C.)A os€ [% /.& /707‘- 3!‘641_3'” fhdn o ol

7"#“: ave Y*Ag e) / C.) 7%:?(/‘nu.HL . éc

at |east one choice of Xy, X, B
| - |

gﬁc(,/\ 'f’hczﬁé >
(%, %,) s P(E). | ”

Bcca,usé P(E)“’O as N—™> 9 , o=

have proved.

Shannon's /\/oi.%L C‘oJQg Theorem . Grven

a DMC with capac]"hé C,: a code rate
R such that R<C, and any § >0,

then, for all N sufficiently large,

and fof‘ dﬂlg dJ‘ijﬂMC»’]T 014 Pr06¢b"/,ﬁ“:'er
To the. Codewords, there exists of
[east one code with at least 278
Codewords such tThat iTs block error
pro bab i/f?"{; I% ‘}47“/'57[&-5
<) .
p<s.
NoTe We . can wse. the 1 cede 'i‘b Teansm T
LNRJ 2 NR-1 bifs from o« BSS. 75
will make The codeidords c7ua(/)l [ikely,

-/ =8

Chapter 5

BLOCK CODING PRINCIPLES

A. Introduction

The rudiments of block coding for a noisy channel were
already introduced in our discussion of the noisy coding theorem
in Section 4.E. We now wish to generalize and deepen this
discussion. We begin with the general definition of a block
code for a channel.whose input alphabet is A = {al, az,...aL}.

A block code of length N with M codewords for such a channel is

a list (51, Xy each item of which is an N-tuple

cer Ky

(or "row vector") of elements from A. The items in the list

are of course called codewords. It is important to note that

the codewords need not all be d&fferent, although "good" codes

generally will have no codeword with multiple appearances.

Example 1: ([oo o] , To11]", [t 01], 1 10]) is a block

code of length N = 3 having M = 4 codewords. This code can be
used on any binary-input channel (i.e., A = {0, 1}) such as

the BSC or the BEC.

The rate of a block code of length N with M codewords is
defined as

log2 M

R = — bits/use, (1)

where "use" refers to "use of the channel”. Notice that this is
a true "information rate" only if the M codewords are distinct
and equally likely, since only then is there log2M bits of

uncertainty about which codeword is sent over the channel.

L2 R B

LT N

In Section 4.E we considered the case where K output digits

from a BSS were the "information bits" that selected which
codeword was transmitted ovér the channel. In this case, we
have M = 2K codewords, each having probability Z-K of being
transmitted. Now, however, we wish to be more general about both
the number of codewords and their probabilities. Toward this
end, we introduce the random variable Z, whose possible values

are the integers from 1 through M, to specify which codeword

is transmitted -- in the manner that 2z = i specifies that Xy
is transmitted.
In the remainder of this chapter, we consider only block

coding for a DMC used without feedback [so that we shall often

make use of (4.3) without further comment.] This implies that
the probability distribution Pz is entirely determined by

the output of some information source (such as the BSS
which would result in Pz(i) = Z-K for i = 1,2,...,2K), inde-
pendently of what might be received over the DMC as the code-
word is transmitted. Thus, ARQ (automatic repeat/regquest)
strategies and similar methods for making use of feedback
information are outside the purview of this chapter.

The essentials of a block coding system for a DMC used

without feedback are shown in Fig. 1. The function of the

encoder is to emit the particular codeword specified by 2,
i.e., to emit
whersa

X =[x %X, ... %] (3)

nsmitted codeword.

. S .

| 2=

= &=

&=

= W 5 =S

=3

']

r—

| 5%

==y

| SE

Y= Ly, v,y] x =[x Xyeo Xyl Z

@——| DECODER | DMC e ENCODER 4__[

Fig. 1l: A Block Coding System for a DMC Used without Feedback.

Example 1 (cont.): The encoder of Fig. 1 for this example

realizes the following function:

z | x

1 (0 0 0]
2 01 1]
3 (1 0 1]
4 [110]

The function of the decoder is to examine the received N-tuple

Y=[y, v, ... v). (4)

- i oy

and then to emit its decision é about the value of the codeword
index Z. Thus, a decoder is & mapping from.N-tuples of channel
output symbols into the set {1,2,...,M} of possible values of
2, i.e.,

7 = F(Y) (5)

- for some function F that maps BN (where B is the channel out-

put alphabet) into {1,2,...,M}.

Example 1 (cont.): If the previous code were to be used on

the BEC of Fig. 4.1(b), one possible decoding function is

the following:

1=

0
o
A
0
A
0
A
A
1
1
A
1
A

(6 1
o)
o)
A
o)
A
1
1
A
1
1
)
1
0

Notice that the decoder decision 2 implies the further decision

that

]
-
=
o))
(53
lal
i1}
3
n
=)
-
o
o+
®
o}
(9]
(o]
0,
[}
s
(o]
H
Q.
=
jop
o
3

n-
=2
[
=
Q
(o]
(o))
o
£
(o]
]
e}
1]

o
= o R e D s b W W WWWNNNN NN o

O 0 0O MM IEFEFOOUOUOOUWP#HUPEFEEFEKFEIEKEHEFEHOOSOOSOOODO

E
5

=

L

(6) [

are distinct, [w

the decision g would also imply the decision é. In fact, de-
coders are often realized in practice by a device which emits
i, the decision about X, followed by an "encoder inverse"
(which 1is usually a relatively simple device) to determine i
from i, which is possible in general if and only if the M

codewords are distinct.

For a given DMC, given blocklength N and given code size

M, there are

different block codes (or, equivalently, different encoders)
since there are LN choices for each codeword in the list of M
codewords, where L is the size of the channel input alphabet.

There are
N 4
MJ

different decoders since, there are M choices of Z for each of
the JN values of Y, where J is the size of the channel output
alphabet. Each such decoder could be used with any such encoder

so there are

N
LMN MJ

different coding systems. For instance, with M=4, N=3, L=2
and J=3 (as in Example 1), there are already enormously many

different coding systems, namely

How do we find a good system from this bewildering array of
choices? Before we can answer this question, we must first

decide what it really is that we want the coding system to do.

- so. @ @l so & 00

* sinip 9O «>

B. Encoding and Decoding Criteria

We begin by supposing that we have been given a block
code of length N and size M for use on a particular channel,

and that it is our task to design the decoder. The objective

is to make the resulting information transmission system (from

encoder input to decoder output) as reliable as possible. In

Section 4.D, we argued that the symbol error probability P

b
of (4.42) (which we there called the "bit error probability"

because the symbols were binary digits) in the information
symbols is the error probability of greatest Practical interest
SO one might suppose that this is the quantity that the decoder

should minimize. However, to do this we would have to know

specifically what the information symbols were and what was the
particular mapping from the information symbols to the codewords.
We can avoid these complicating matters entirely if we choose

instead to work with the block error probability PB of (4.52).

Inequality (4.53) ensures that if we minimize PB we shall also

at least roughly minimize Pb. Notice for the situation of Fig. 1

that we can write PB as

Py = P(z % 2) (7)

because, whatever mapping actually exists between the information

symbols and the codewords, it will always be true that the

information symbols uniquely determine Z and vice-versa.

By focusing our attention on the block error probability P

rather than on the symbol error probability Pb, we are freed from

Wworrying about the details of the mapping from information symbols

[C0 N PVRNOR

“§ e e

C

-y £ = G

e J

Bl

€

= 020 ==

=

to codewords. However, it is still not clear what we wish the

decoder to do. In particular, there are at least three decoding

¥ 17 B

criteria for each of which one can give a reasonable argument

to justify its use, namely

(i) The block error probability PB when the codeword pro-
babilities are determined by the actual information source that
we wish to transmit. The decoder that minimizes this PB is called

the maximum a posteriori (MAP) decoder.

(ii) The block error probability PB when the codewords
are assumed to be equally likely. The decoder that minimizes

this PB is called the maximum likelihood (ML) decoder.

e P -G W -2

(iii) The worst-case block error probability, (PB)WC,

which for a given decoder is defined as

B)wc = max PB. (8)
PZ

(P

The decoder which minimizes (PB)wc is called the minimax decoder

because it minimizes the maximum block error probability for all

assignments of probabilities to the codewords.

Criterion (i) is perhaps the natural choice, but several
factors militate against its use. For one thing, we would need
to know the information source statistics before we designed the
decoder. For another, we would have to change the decoder if
this source were changed. Because the sender may exercise his
freedom to use the channel as he wishes, we might find ourselves
with a very poor system after such a change although previously
the system was optimum. [In fact, some telephone companies are

in economic trouble today because they optimized their systems

for voice transmission but now must accommodate digital data
transmission.] This discussion suggests that criterion (iii)
might be the better one as it will lead to a system that will

be the most "foolproof". But criterion (iii) is perhaps too
conservative for most engineers' taste. It appeals to believers
in "Murphy's Law” ("The worst thing that can happen will happen".)

It is also usually a complicated task to find the minimax

decoder.

The reader is not wrong if he has by now guessed that we
will select criterion (ii). This criterion has many things in
its favor. First, of course, it offers the convenience of not
having to know the source statistics (which determine the code-
word probabilities) before one designs the decoder. Secondly, it
minimizes PB for the important case &hen the source is a BSS, as
this source yields equally-likely codewords. In fact, the binary
(D=2) source coding schemes of Chapter 2 are just ways to convert
other information sources to the BSS (or a good approximation
thereto) as we can see from the fact that each binary digit from
the source encoder carries one bit of information (or almost this
much). Thus by choosing the ML decoder, we choose to minimize PB
for the very source that will be created by applying a good
"data compression" scheme to any given information source. This
argument alone would justify our designation of the ML decoder
as "optimum”, but there is yet another point in its favor. The
case of equally likely codewords is the case when the code is
being usod to transmit the most information (logzM bits) that

is possible with M codewords so that a decoder which works well

for this case ought certainly to perform satisfactorily when

v 0 S
b)

L') 3
=2

J

=

=

“ [J R, i

J

==

J

less information is being transmitted. In fact, we shall later

give a rigorous verification of this plausibility argument.

e & GO0EA @ &

In effect, this verification will show that a ML decoder is also
"almost minimax."

For all of the above reasons, we now commit ourselves to the

following criterion:

Decoding Criterion: The measure of goodness for a decoder for

a given -block code and given channel is the smallness of the
block error probability PB when the codewords are equally likely.
Thus, a decoder is optimum if and only if it is a maximum likely-

¢

hood (ML) decoder.

This choice of decoding criterion forces upon us the following

choice of an encoding criterion:

Encoding Criterion: The measure of goodness for a block code

with M codewords of length N for a given channel is the smallness
of the block error probability PB when the codewords are equally

likely and a ML decoder is used.

Perhaps this is the time to say that we have no intention
actually to find optimum codes in general or to design true ML
decoders in general. Our interest in optimality is only for the
yardstick that it gives us to evaluate practical systems. It is
generally a hopelessly difficult task to find the optimum code
for a given DMC and given choice of M and N, and almost as
difficult in practice to implement a true ML decoder. But if

we know (or at least have a tight bound on)APB for the optimum

v 89 -

system, we can make sensible design choices in arriving at a

practical coding system.

C. Calculating the Block Error Probability

In this section, we see how to make an exact calculation
of PB' from which we shall also see how to find the ML decoder
and the MAP decoder for a given code and channel. Actually, it
is easier to work with the probability l-PB that the block is

correctly decoded. From (7) and (5), we have

-

1-P 2)

B

P(2Z

P(z = F(Y)). (9)

Invoking the Theorem on Total Probability, we can rewrite

this as

1-P

i
™
g
=
!
g

i
<
|
1<

o

S

. Y =
= ; PZIX(F(X) |y) PX(X) = ;’PZX(F(X)'X)' (10)

where the summation is over all N-tuples y = [yl Yy ...yNJ of

channel output symbols.

We can now rewrite the right side of (10) as

1-P, = I PYIZ(XlF(X)) PZ(F(z)). (11)
y =
But when 2 = F(y), the transmitted codeword is X = §F(x), SO
we can rewrite (l11) as
1-P, = i PXIK (y_|§F(X))PZ(F(x)). (12)

Equation (12) is our desired general expression for PB

applies to any channel (not only to DMC's) and to any probability

and

distribution P? for the codewords (not only to the case of

equally likely codewords). (See Problem 5.2 for an alternative

form of (12) that is often convenient to use.)

Gt iQ -

F @

[

=

&= GEE

J

=

En a= &=

=

Bz

5.11

We can immediately draw two important inferences

from (12). Because PB will be minimized when we maximize the

right side of (12) and because the choice of a decoder is pre-

cisely the choice of the function F in (12), we have as our

first inference from (12):

The MAP decoding rule: Choose the decoding function F so that,

for each N-tuple y of channel output symbols, F(y) = i where 1

is (any one of) the index(es) that maximizes

PXI.’E(Xlﬁi) P,(1).

Because the ML decoding rule is just the MAP decoding rule

-l

for the special case when the codewords are equally likely (i.e.,

when Pz(i) = 1/M for all i), we have as our second inference:

The ML decoding rule: Choose the decoding function P so that,

for each N-tuple y of channel output symbols, F(y) = i where

$
L
i is (any one of) the index(es) that maximizes ;
@
which in the special case of a DMC used without feedback
becomes
N
Fy|xLlEy) = 1 Py (g lxgy) (13)
where we have used the notation
;0= [y x5 .0 X0 _ (14)f

The reader should now verify that the decoding function

P specified in Example 1 above is indeed a ML decoding function

for the given code and given DMC (the BEC) . Because, for certain

values of y, the index i which maximizes (13) is not unique,

there are other decoding functions which are also ML for this
code and channel. [In fact, the reader may wish to verify that,
when 0<8<l, there are exactly 4(2%) = 256 different ML decoders
for this example, because there is one y for which all 4 choices
of i maximize (13) and there are six values of y for which 2
choices of i maximize (13). When 6=1, however, every one of

the 427 = 254 'kslo16 possible decoding rules is ML. The reader

may wish to reflect on the significance of this fact.]

Using (12), we can in a straightforward way calculate PB
for any block code, any channel, and any decoding rule. It
may, however, take a long time to make the calculation. For
instance, if we had used N = 100 (which is not unduly large
for practical systems) and the channel were a BSC (and thus as
simple as one can get), the numberJOf terms in the sum on the

lOO‘% 1030 -- more than a million times

right of (12) is 2
greater than Avogadro's number! Calculating PB exactly appeals
in general only to people whose industry far exceeds their
imagination. The imaginative person will seek a far less tedious
calculation that gives nearly as much information; i.e., he

will seek simple bounds on PB that are tight enough to satisfy

the limits of his curiosity about the value of PB.

i R X X N T IO

ot a8 - -

[
[
L

=)

&=

D. Codes with Two Codewords -- the Bhattacharyya Bound

Codes with only one codeword are of course uninteresting,
but those with M = 2 codewords are worthy of considerable

attention. From their properties, one can infer many important

facts about codes with many codewords. i
So that we may study the dependence of PB on the proba-
bility distribution PZ over the codewords, we introduce the
notation
Pl = P(z # zlz.= i) (15)
for the conditional block error prbbability given that the
i-th codeword is transmitted. By the Theorem on Total Proba-
bility, we have
1
:
M 1
Py = iil PBli P,(1). (16) 3

It follows from (16) that (for a given encoder, channel and
decoder) the worst-case (over choices of the codeword pro-
bability distribution PZ) block error probability as defined

by (8) is just

(17)

and occurs when Pz(i) = 1 for an i that maximizes PBIi'

e ic

L)

It is often convenient to specify the decoding function
F by the "decoding regions" into which it partitions the set
of received N-tuples for the channel in gquestion. The i-th

decoding region is just the set

O, =1y : yeBY and F(y) = i} (18)

where B is the channel output alphabet. We can then write

PBIi = Z PYIX(XIEi). (19)
Xé‘ai -

Equations (15) - (19) apply to any block code and any
channel. But an important simplification occurs in (19) when
M = 2, namely y does not belong to the specified decoding

region if and only if it does belong to the other. Thus, for

instance, we have

L]
38

PBIZ = Z PXIK(XIEZ)' M

. (20)
YE L)

Despite its apparent simplicity, (20) is often very difficult
to evaluate for interesting decoders (such as a ML decoder)
because of the difficulty in carrying out the sum only over
those y inJﬁl rather than over allfx. To obviate this dif-

ficulty in the case of ML decoders, we first observe that
3
YELD, @Pyé(z@l) > Pyz(_(xlﬁz) (21)

for ML. decoding. In fact the inequality on the right would
also imply that y_ea@l exXcept that, when it is satisfied with
equality, we are free to place that Y in eitheraca or<i%.
Using the fact that if a number exceeds 1 sO does its positive

square root, we see that (20) and (21) imply

P N Z P (zlg)\lp (ylx,)/P (zl§7 (22)
B| 2 xéo@lzl& 2° Tyl Ry g%

where here and hereafter the Positive square root is understood.

we can of course simplify (22) to

PB,Z € Z prlx(xlil) Pylx(x,ﬁz)—' . (23)
yeO =% ¥ix

Qrop st ¢ .

o 00 o 65

&)

e

An entirely similar argument would have given

P < E_‘_ -\{P (ylx,) P (ylx,) ., (23')
B[l y€ 2, Yix'EIET Ty |xtEi=2

and indeed it was to make the summand symmetrical in X and

X, that we introduced the square root in (22). Combining

=2
(23) and (23'), we obtain

— >
)
Pal1 ¥ Pg|g Z-\lpylx(y-lil) PyixXl%y) (24) 4
Y == == b
]
and we note with satisfaction that the sum is now over all f
y and hence considerably easier to evaluate.
For the special case of a DMC, we can use (4.3) in (24)
to obtain
s 1
PBIl + PBIZ'S I ...k E PYIX(nyln)PYIX(xQXZn)’
Yy Yy n=1
where we have again used thé notation of (14). Because the 5
¥
square root of a product equals the product of the square
roots, this simplifies to
. N 1
< 1
l1 " Pel2 ¥ L 0 Py x (V1% 0) Py g (YIxp5) (247)

where we have merely written the dummy variable of summation
as y rather than yn. Because PBll and PBIZ are nonnegative,
the right side of (24') is an upper bound on each of these
conditional error probabilities. Thus, we have proved the

so-called:

Bhattacharyya Bound: When the code (§l, 52) of length N is

used with ML decoding on a DMC, then

5.16 ‘L

N \
<] =
PBli nzl 5‘\Pylx(y|xln) PYlX(YIX2n)' i 1,2 (25)

or, equivalently,

N

< 2
B)wc S nzl i-qPYIX(YIXln) PYIX(YIXZn) : (26)

(p

The Bhattacharyya Bound gives the first justification

of our claim that a ML decoder, which is guaranteed to minimize

PB only when the codewords are equally likely, will also per-

- W g el W <

form well regardless of the codeword probabilities, i.e.,that E

it will be "nearly minimax."

Before turning to specific examples, we now argue that

we can generally expect the bound (26) to be quite tight. First,

we observe that a ML decoder is most likely to err when the
received N-tuple is "near the boundary" of the decoding regions,

i.e., when ¥ = y where y gives near equality in the inequality

- 8

of (21). But it is just for these y that the square root in

(22) will be near unity; hence we can expect (22) or equivalently ;
(24), to be quite tight. But going from (24') to (25) weakens i
the bound by at most a factor of two for the larger of PBll and &
PBI2 so that we can expect (26) also to be quite tight. i
In the special case of a binary-input DMC and the length N -
repeat code, i.e., the code ([0 0 ... 0] , 11...1), -
the bound (25) becomes simply , 1
Pply € (z ’\lpylx(ylm lex-(yll)')N , i=1,2. (27) - m
y

Defining

Dy = = logz 5 {;;IX(YIO) PYIX(Yll) (28)

G & e

= =3

which we shall call the Bhattacharyya distance between the two

channel input digits, we can rewrite (27)as

-ND

Py € 2 B, i=1,2 (29)
or equivalently as ,
-NDB
(P) < 2 . (30)

B'wc
Next, we note that, by Cauchy's inequality (cf. Prob. 5.5),

the summation in (28) satisfies

f,\lPYIX(YIO) Py x (Y1) s\]g Py x(¥]0) \])z, Pyx @I oy

with equality if and only if

= ¢ ‘

lex(le) Ple(yll), all y. (31) :

¢

Thus, it follows that g
Dy 2 O

with equality if and only if (31) holds. But (31) can be

written as
PYIX(ylx) = Py (y) all x,y

which is just the condition that X and Y be statistically in-
dependent regardless of the choice of Px, and this in turn is

just the condition that the capacity of the DMC be zero. Thus,
1 4
é
ut

we have shown that the Bhattacharyya distance D_ of a binary-inp

B

DMC is positive if and only if the capacity C is positive. It

follows from (30) that by using a repeat code on such a channel

with C > 0, we can make P_ arbitrarily small by choosing N

B

sufficiently large. This is not especially surprising since

5.18

L
the rate

R = 1/N

of the repeat code approaches O as N increases, but it is i
at least a demonstration that PB can be made as small as

desired for codes with more than one codeword.

Example 3: For the BEC of Fig. 4.1(b), we find

I

__‘ 2] _ y :""
L 1Py xvlo) By vl = 8 -u
Y

so that E
Dy = - 1og26. (BEC) (32)

Thus, the bound (30) for ML decoding of the length N repeat

code becomes

Nlog, ¢ :
s2 2 =&Y

But in fact, assuming § < 1, a ML decoder will always decode

correctly for this code and channel unless [A A... 8] is re-

[
(BEC) (33) [
[
L

ceived. But the probability of receiving [A A .. AJ is &N

14

independent of which codeword is transmitted. Assuming that

the ML decoder chooses Z = 1 when [A A ... A] is received, J
I'."sn.
it follows that '
N
= 4 B
Py P, (2)
’
so that s M
=6
(Pp) e !

which shows that the Bhattacharyya bound (33) is exact for

this code and channel.

C

[

= s

Example 4: For the BSC of Fig. 4.l1l(a), we find

E\EYIX(ylm PyxvID = 2/E(1-€)

so that

Dy = - log, [2/€(1-&7] . (BSC)

Thus, the bound (30) for ML decoding of the length N repeat

code becomes

Nlog, [2/&€(I-€7]

(P3) <2

B wc

N/2

= 2"[e 1-)] (BSC)

In this case, there is no simple exact expression for PB.

However, one can get a fair idea of the tightness of the

(34)

(35)

Bhattacharyya bound (35) by considering € <<1. The results for

l1$<NgK8 are as follows:

N Bound (35) Actual (PB)wc for ML decoding
1 x gel/2 €

2 ~ 46 = 2%

3 ~ 8e/? v 3¢

4 = 16 &2 ~ 6&°2

5 x 32¢€ 2/2 ~ 10€3

6 ~ 64e’ x 20&°

7 =128¢ 1/2 ~3524

8 z256€4 f;r705.4

(All ML decoders give the same PB when the codewords are

equally likely, but can have different (PB)wc depending on

how ties are resolved. For N odd, the ML decoder is unique

and also minimax [see Problem 5.2]. For N even, there are

oA @ e

ia P -

FARE D -

many ML decoders; that giving the largest (PB)wc [which is

one that chooses F(y)to have the same value for all y's where
there is a choice] was used to construct the above table,

its (PB)wc is twice that of the ML decoder that gives the

smallest (Py) [which is one that chooses F(y) = 1 for half

of the y where there is a choice, and F(y) = 2 for the other

half] and that is also minimax. The Bhattacharyya bound holds

for all ML decoders so its tightness should properly be determined

by a comparison to the "worst" ML decoder, as we have done here.)

sl B

e

e

—d

=

&

2 - &

[

L] L J

E. Codes with Many Codewords -- the Union Bhattacharyya
Bound and the Gallager Bound

We first consider a straightforward way of generalizing
the Bhattacharyya bound (25) [but not the slightly stronger

bound (24')] to a code (§1, 52""§M) with many codewords.

We begin with (19), which we write as

M
PB|i = 521 é%;ﬁ.'lex(x|§i). | (36)
j¥i

Next, we note that, for ML decoding,

y_ea@j_—3> P(Xlij) > Ply]x,), (37)

from which we see |by comparison to (21) | that every y in

qﬁj can also be put into the decoding regionoﬁé of a ML

decoder for the code (x!, §é) = (§i, §j) with only two code-
words. Thus, we sée that
E: P (y|x,) < EZ.. P (y|x,) = p! (38)
X =i Y -

where Péll denotes the block error probability for this second
ML decoder when §i = X, 1s sent. We can now make use of (23')

in (38) to conclude that

YEL

P) < Z. P) P)
Zj x| x 2lzy) zev%\l y)x (L2 Pyjy iz

$ g .\lpglg(zlii) Pz|5(1|§j) . (39)

Substituting (39) into (36), we obtain the so-called:

Union Bhattacharyva Bound: When the code (51, §2, .oy EM)

of length N is decoded by a ML decoder, then

® v ves =

M \ 1

Pali § z L Ple(Xlz{-i) Pypx xlxy) (40)
Jjflry o =T -
Jrti

for i =1,2,...,M. In particular, for ML decoding on a DMC,

I\E/:I N T v

P_,. < 1 y VP (y|lx,) P (ylx._). (41)

Bli 521 n=1 y Y| X in’ “Y|x jn

j#i

[The reason for the name "union Bhattacharyya bound" to
describe (40) stems from an alternative derivation in which
the event 2 ¥ i for a ML decoder is first written as a union

of the events P (zlgi) for j ¥ i, then the

y|x¥l85) > Pyjg
probability of the union of these events given that Z2 = 1
is overbounded by the sum of their probabilities given that
2 = i.] When the number of codewords is large, one cannot
expect the bound (40) [or (41)] to be very tight for the
reason that the decodiné region A?; considered above is
much larger (in probability as'well as in the number of
N-tuples that it contains) than the actual decoding region

dﬁj -- thus, the bound (38) will be quite loose in this

case.

We now consider a less straightforward way to generalize
the Bhattacharyya bound (25). Again our starting point is
(19), which we write again for ease of reference.

S e

X¢4%_

P

Bli XIE}Zlﬁi)' (19)

For a ML decoder, we know that

X*“ai =$> P¥|§(¥|§j) > Pglé(zlxi) for some j ¥ i (42)

aE W' e
fem—

|

[e B =

i W v
e m; O

k-

{ J t]

L

but, unfortunately, we cannot easily characterize such j.

But we can certainly be sure that

Sy P
o { g [T 5
yé&D, = 21, all s 20, all p >0 (43)
%j=l Py|x (X1%) J | :
-

because (42) guarantees that at least one term in the sum
will alone be at least one and then, since the sum is at
least one, raising the sum to a nonnegative power p will
also yield a number at least equal to 1. [For the moment we
postpone a discussion of the reasons for including the free
parameters s and p in (43).] We now note that (43) can

be written as

M) v
-s _ s
y¢.ﬁi p— leé(y_lgi) DL'Z]_ Pglg(y-l-&j):] >1l, all s 2 0, p=>0,(4

It
We next overbound the sum in (19) by multiplying each of its

terms by the left side of the inequality in (44) to obtain

P $ E: P (ylx)l-SD ? P (y|x) S p all s 3 0,p > 0. (4
Bli\ - lezl—i) lex...j ’ > 0 2 . 4]
&0, —'= 1 ==

k31
As we are free to choose both s and p to be nonnegative

numbers, nothing prevents us from making the choice 3

s=1—},—p, (46)

which at least introduces some "symmetry" into (45). Making

this choice and further weakening the bound (45) by extending

the summation to all y, we obtain finally the:

Gallager Bound: When the code (51, 52, .oy §M) of length

M is decoded by a ML decoder, then

1 1 4°
Pyiy € E ng(-‘llﬁi’“p [jzl Py x (LI,)1“’} , all p 2 0. (47)
JFi
for i=1,2,...,M. In particular, for ML decoding on a DMC,
N _11_0[v Ijlr?]"
PBIi < nEl 5 PYIX(lein) j£1 PYIX(YIXjn) , all p > O. (48)

jFi
We now consider the tightness of, and the rationale
behind, the Gallager bound. First, we observe that choosing
p =1 in (47) [or (48" yields the bound (40) [or (41)]. Thus,

when optimized by choice of p, the Gallager bound is strictly

tighter than the union Bhattacharyva bound, except when the

choice p= 1 minimizes the right side of (47). This shows that
the choice of s in (46) had some merit. In fact, as the reader
may check by a tedious differentiation, this choice of s
minimizes the sum over i of the right side of (45) when the
second sum in (45) is slightly enlarged by the inclusion of
the term with j = i; but in any case we were free to choose s
subject only to the constraint that s > 0. Next, we consider
the rationale for introducing the parameters s and P in (43).
Because, for certain j, the ratio PXIK(Xlﬁj)/PX|§(XI§i) can be
much larger than 1, it makes sense to introduce an s in the
range 0 $ s S 1 Ewhich the choice (46) ensures] to reduce the
contributions from such terms. Then, because the sum in (43)

might far exceed 1 when M is large, it also makes sense to

=

S G 8B

3 &

L

raise this sum to the power p for some P in the range

O ¢ p s 1 [in which range the optimizing value of p will
usually lie -- but not always because larger values of p
may better decrease the contribution from those Y in d9i

that were included in weakening (45) to obtain (47).]

The tighter Gallager bound is not substantially more
difficult to compute than the union Bhattacharyya bound.
But the reader should not be deceived by that assertion.
Unless the code and channel possess a high degree of
simplifying symmetry, both bounds are too complicated to
calculate in most practical cases. Their utility lies rather
in the fact that both bounds can conveniently be "averaged",

as we are about to do.

F. Random Coding =-- Codes with Two Codewords and the
Cut-off Rate of a DMC

Shannon's 1948 paper was so full of innovative ideas
that it is difficult to say which one was the most significant,
but the "trick" of so-~called "random coding" would be near
the top in anyone's list of Shannon's major innova;ions. It
is also one of the most widely misunderstood ideas in
Shannon's work, although it is one of the simplest when proper-

ly understood.

Shannon recognized clearly what the reader who has been
solving the problems in this chapter by now already suspec¢ts,
namely that it is computationally unfeasible to calculate,

or even closely bound, the block error probability PB for ML

decoding of practically interesting codes with many.codewords.
Shannon's insight, however, rested in his réalizing that
bounding the average PB for all codes of a given rate and
“length was a much simpler matter. In this section, we bound
the average PB for codes with two codewords, both because the
"random coding trick" can most easily be understood in this
setting and also because this special case will lead us to

a measure of channel quality, the "cut-off rate”, that is a

close rival to channel capacity in its usefulness and

significance.

The following "thought experiment" should make clear
the nature of a random coding argument. Suppose, for a given
channel and given N, that one has, after several thousand
years of calculation, calculated "(PB)wc with ML decoding for
every length N block code with two codewords. To make the
dependence on the code explicit, we write PBw (51, §2) to
denote (PB)wc for ML decoding of the particular code (51,52).
Next, suppose that we store an encoder for each such code in

a very large warehouse and stamp the encoder for the code

(51,52) with the number Pch(§1,52). Now consider the random
experiment of going into the warehouse and selecting an
encoder "randomly" in such a way that the probability of se-

lecting the encoder for the code (51,52) is Qﬁléz(il'KZ)--
where here we use QX X to denote the probability distrikution
=1=2 .
for the code, rather than the usual PX X_* to assist in
=1=2
reminding us that we are considering a new random experiment,

not the random experiment that we had considered when we

calculated Pch(ﬁl’ﬁz) for a particular code (§l,§2). For our

NP

lsasaa =

- s o =

d

e

=

new random experiment, we could now calculate the expected

value of (PB)wc as

eley)] =

% o~

L Ppoc(X10%,) Qp o (%,%)), (49)
1 %2 —1=2

which is just the average of the number stamped on all the
encoders in our warehouse. Having calculated E[(PB)wc] =
say, we would be sure that at least one encoder in our ware-
house was stamped with a value of (PB)wc at most equal to

a. In fact, the probability of selecting an encoder stamped
with (PB)wc z5a would be at most % [}ee Problem 5.9]. And

this is all there is to so-called "random coding"!

We now carry out the averaging called for in (49).

To simplify things, we specify

Q = Qg(ﬁl)Qg(ﬁz) ' : (50)

(x,,%,)
£ %, 17=2

which says simply that we.make the probability of choosing
(the encoder for) the code (51’52) equal to the probability
of choosing X and X, independently according to a common |
probability distribution Qx [in other words, we make §1 and

X, i.i.d. random variables for our random experiment of code

selection.] Equation (49) then becomes

E[(Pp) el =1L Pauc(xyrxy) Oy g) Oy (xp) - (51)
—.l —

But the bound (24), because of (16), implies the Bhattacharyya

bound

PBuc (£17%5) < y‘ Py x (X2 P(x[%,) (52)

Substituting (52) into (51), we obtain

BlPplycl € 1 1 IV Pyl Py el opxog(x,) = -
X %, ¥ o
|

= 11 oy g lxley) oy ty) z\IPYIX(zlx) Oy (xy) . (53)
Xél 2 i
But we now recognize that X, and X, are just dummy variables =
of summation so that (53) reduces simply to -
- -\ 1 2 B
e((py),] < %[}Z{ ey xzln) o] (54) .

e e d
=

where, in accordance with our usual convention for probability

distributions, we have dropped the subscript X from QX.

To specialize (54) to a DMC, we specify that the code-

word probability distribution satisfy

2,...xN)

I
h =2

Qé(xl,x Qx(xn) (55)

n=1

where QX is some probability distribution over the channel

input alphabet, i.e., the components X

|
[
t
[

l,x2,...xN of a che—

word are also i.i.d. random variables in our new random

 isomrne|

experiment for code selection. Then, for a DMC, we have

N | ' L .
-\lPXL}_{.(XlE) Q(Z{_) = El.\lpylx(ynh(n) Q‘(xn)' (56)

n

Substituting (56) into (54), we obtain

. 2
sl < 1. [n 1 E‘\]PYIX(YnIXn) aex)]? = i

l yN n

=z

N
= I
n=

! [}Z{ Vg x g lx,) 2] (57)

n n

1

= a5

= Wl EE &=

==

Recognizing that X and yn are now dummy variables of

summation, we can rewrite (57) as
r

'
e((p,),] < 1 [}2{ \ERIED Q(x)]z):.- : (58)

~

where we have dropped the subscripts from P in accordance

Y|x
with our convention for probability distributions.
Rewriting (58) to emphasize the exponential dependence on

the codeword length N, we obtain the:

Random Coding Bound for Codes with Two Codewords: Over the

ensemble of all codes with two codewords of length N for
use on a given DMC, wherein each code is assigned the

probability that it would be selected when each digit of

MNP 'C W

each codeword was chosen independently according to a given
probability distribution Qx over the channel input alphabet,

the average of the worst-case (over assignments of probabilities
for using the two codewords) block error probability, assuming
a ML decoder for each code, satisfies

-N{-log,] [ITP(¥[%) o(x)]?}
Yy x

E[(Pg)] < 2 . (59)

In particular, !

LY RN

0
E[(PB)WC] <2 (60)
where
R, = max {-log, I [[To(yTx) a(x)] %} (61)
Q Yy X

or, equivalently,

R, = -log, {min [[Ve(yIx) 0x)1%} . (61')
Q y x

«jbe uo -

The quantity that we have denoted RO is called the

cut-off rate of the DMC for reasons that we shall soon con-
sider. For the moment, we will content ourselves with noting
that (i) RO depends only on the channel itself since the
optimization over QX removes the dependence on the assignment
of probabilities to the codes in the ensemble, and (ii)

R. >0

0 (62)

with equality if and only if the capacity C is also O. The
proof of (62) is left as an exercise [Problem 5.10] in which
one further shows in fact that the exponent in wavy brackets

in (59) is also nonnegative for every choice of Qx.

The optimization over QX needed to find Ro fortunately
becomes extremely simple in the two cases of greatest practical

interest, namely for birary-input channels and for all

symmetric channels. For these cases, it is easy to show

[see Problem 5.11] that
P _
QX(O) = QX(l) =3 achieves Ro when A = {0,1} (63)

where A is the input alphabet for the DMC, and Esee Problem 5.12]that

Q(x) =

e

» all x& A, achieves RO when the DMC ' (64)

is symmetric.

Making use of (63) in (61), we see that for any binary-

input DMC (whether symmetric or not)

R
0

Ple

1 1 /72
--log2 g [5 PY[X(YIO) 3 (y|1)

1 -log, [1+ 1 /By vT0) Py x (1] (65)
y

Making use of (28), we see that (65) can also be written

AT Y 1 BY g

[
[
L
;

= =3

&

= s

e

e e

= B
R, = 1 -log, 1 +2 7] | (66)

where D_ is the Bhattacharyya distance between the input

B
letters of the binary-input DMC. Equation (66) shows that

RO and DB uniquely determine one another for a binary-input

DMC. Using (32) and (34) in (66), we find

R, = 1 -log, [1 + 6] (BEC) (67)
and

R, = 1 -log, (1 + 2/€(1-€7] , (BSC) (68)
respectively.

Next, making use of (64) in (61), we find that, for any

symmetric DMC,

R = -log, I[L] BT)2
2 oLl ‘

()

log, L - log, [1 + ¢ : ;: 12; /§Y|X(le)PY|X(le|)'] :
X'$x

where L is the size of the channel input alphabet.

Some insight into the random coding bound can be gotten
by considering the case of a noiseless BSC, i.e., a BSC with

€ = 0. From (68), we see that

RO =1

and hence (60) implies that
-N
el ey) € 27 (70)

This bound seems at first rather weak since, after all, the
BSC is noiseless. However, the probability of those codes

in our ensemble having two identical codewords is just

_ _ 4N
P(X) = X,) =2
since, regardless of the value X of Kl’ we have probability
2N of choosing X, also to be x because Q. (0) = Q. (1) = 1/2.
But, for each such code with two identical codewords, the

A

decoder that always decides 2 = 1 is ML and has (PB)wc = 1.

All other codes give PB = O with ML decoding on this channel.

Thus, we see that if we choose these ML decoders

_ .-N
E[(PB)wc] =2

so that the random coding bound (70) is in fact exact.

The point is that there are two contributions to E[(PB)wc],
namely one stemming from the chance that the channel noise
will be "strong" and the other stgmming from the chance that

a "bad code" will be chosen.

a3

78

L) E=a

- s &

J

G. Random Coding -- Codes with Many Codewords and the
Interpretation of Cut-off Rate

It is a simple matter to extend the random coding bound
of the previous section to many codewords via the union Bhatta-
charyya bound. Suppose that our "warehouse" now contains an en-

coder for each possible block code (&l, Kor oo §M) of length

N with M = ZNR codewords and that we have somehow assigned pro-
babilities to these encoders. Taking expectatibns in (40), we

then obtain

M
Bleg)] < jzl E[% Py x LX) Py)] (71)
jFi
for i = 1,2,...M where we have merely interchanged the order of

averaging and summing. But we now recognize the expectation on
the right of (71) as just the expectation of the Bhattacharyya
bound (52) for two codewords. Thus, provided only that our

assignment of probabilities to the encoders satisfies

in §j(5i'5j) = Q§ (x;) Qg(ﬁj)’ all j # 1 (72)

for all choices of X, and §j’ it now follows from (52)-(54)

that

(73)

. 2
ELPBIi] < (M-1) E[Z Py (2]%) Qx(i)]
Y X S

¥|x
for i=1,2,...,M.

The condition of (72) is the condition of pairwise inde-

pendence of the codewords and states only that we must assign
probabilities to our encoders in such a way that the total pro-
bability of all the encoders with a given pair of channel

input vectors as the i-th and j=th codewords must equal the

probability of choosing these two vectors independently according
to the common probability distribution QX' One conceptually

simple way to get such pairwise independence is to make all

the codewords independent, i.e., to assign probability

= Y

Q Q

X (&m) (74)

(l{_ ' X l---IE) =
X, X, .. Xy F1'E2 n T

to the encoder for (§1’52""§N)' However, we shall see later

in our discussion of "linear codes" that we can still satisfy
(72) for such a small subset of the possible encoders that it

is no longer possible to satisfy (74). This is important because
it tells us that this smaller (and easily implementable) set of
encoders is just as good as the larger set in the sense that we
can prove the same upper bound on average error probability for
both sets of encoders. We can then confine our search for a

good encoder to those in the smaller set.

For the special case of a DMC and the choice of QX as in

(55), it follows from (54) - (58) and the trivial bound

M-1<M-= zNR (75)

that (73) becomes

-N(RO-R)

_E[_PBli] < 2 (76)

for i =1,2,...,M when we choose QX as the minimizing
distribution in (61). Taking expectations in (16), we see that

(76) implies the:

rRandom Coding Union Bound for Block Codes: Over any ensemble of
block codes with M = ZNR codewords of length N for use on a given

UMC, wherein each code is assigned a probability in such a way

tnat the codewords are pairwise independent and that for

—

= 3

%‘-ll |

i | i J '

J L)
L 4

Sl =

===

S = G5 W G & =S

! J

5.35

i=1,2,...,M each N-tuple of channel input letters appears as
the i-th codeword in codes whose total probability is the same as
the probability for its selection when each digit is chosen in-

dependently according to the RO

Q then, regardless of the particular probability distribution

XI
PZ for the codewords, the average block error probability of

these codes for ML decoding satisfies

-N(RO—R)

E[p,] < 2 . (77)

In (77), we have our first rigorously justified result
showing that, by using sufficiently long block codes, we can
make PB arbitrarily small without decreasing the code rate pro-
vided only that the code rate is not too large. In fact, we see
that for a fixed code rate R with R < Ro, we can choose codes
for various values of.N such that the resulting PB decreases
exponentially fast with blocklength N (or, more precisely, such

that PB is overbounded by an exponentially decreasing function

of N.) We now introduce the notation

EB(R) = Ro - R (78)

for the exponent in (77) when the code rate is R, and we shall

call EB(R) the Bhattacharyya exponent to remind us that it arose

from the averaging of the union Bhattacharyya bound. This ex-

ponent is plotted in Fig. 2 from which two important facts are

readily apparent:

0" This shows that Ro

has the same dimensions as the code rate, R, and justifies the

(1) EB(R) > 0 if and only if R < R

inclusion of "rate" in our terminology of "cut-off rate" for

R It also shows that

o.

~achieving probability distribution

RO < C (79)

because otherwise we would have a contradiction to the Converse

of the Noisy Coding Theorem.

(ii) EB(R) decreases linearly with R from its maximum
value of RO at R = 0. In fact we already saw in (60) that RO is
the error exponent for codes with M = 2 codewords, i.e., for

codes with rate R = 1/N bits/use.

This -dual character of RO as both (i) the upper limit of a rate

region for which we can guarantee that PB

small by choice of N and (ii) a complete determiner of a positive

can be made arbitrarily

error exponent for every rate R in this region makes RO perhaps

the most important single parameter for characterizing the

quality of a DMC. Even channel capacity, C, is in a sense less

informative as it plays only the first of these two roles.

Eg (R)

‘R R
(0]

Fig. 2: The Bhattacharyya Exponent E (R) of the Random
Coding Union Bound
There is one sense in which the random coding union bound
(77) is still unsatisfactory. For each assignment of probabilities
to the codewords, the average PB for all codes is good, but this

.doeg not imply that there is any one code that gives a good PB

for all choices of P,. We now remedy this deficiency in the

bound (77).

U

— Ee=h

=== I e

“)

=

& - O & &8 =

— |

We begin by considering the case of equally likely code-

words (i.e., PZ(i) =1/M for i = 1,2,...,M) so that PB for each

code is just the arithmetic mean of the conditional block error

probabilities PB[i’ i=1,2,...,M. Next, we suppose that M is

even, i.e., M = 2M', and we discard from each code the M' code-
words £for which PBli is greatest. The remaining half of the

codewords in each code must all correspond to i such that

Ppiy € 2 Py

where PB is the block error probability for that code. But
a@ ML decoder for this new code with M' = M/2 codewords will have
even larger decoding regions for its codewordsand hence will

give conditional error probabilities

for i =1,2,...,M'., This in turn implies that the worst-case
(over assignments of probabilities to the M' codewords) block

error probability for the new code satisfies

(Pplye € 2 Pp (80)

where PB is still the block error pProbability for equally likely
codewords in the original code. Assigning the same probability

to the new code as to the original code, we see that (80) implies

(p? T .5 N(Rg-R)
efcey),] < 2.2V (Ro

where we have made use of (77) for the ensemble of original
codes. But the rate of the new codes is R' = % logzM' =
% logz(M/Z) = R - 1/N, so the last inequality may be written

E[(PY) 0] < 4-27N(RO7RD)

But there must be at least one new code whose worst—-case error

== B2 &3

probability is no worse than average so that we have proved:

The Existence of Uniformly Good Codes: There exist block codes E
with M = ZNR codewords of length N for use on a given DMC such n
that the worst-case (over assignments of probabilities to the J
M codewords) block error probability with ML decoding satisfies il
(py) o < 4-2 N (RoTR) (81) :

¥

This result is one more verification of our claim that

ML decoders (which minimize P_ for equally likely codewords) are

B

"nearly minimax" (in the sense of nearly minimizing the worst-

case PB.)

J

H. Random Coding -- Gallager's Version of the Coding Theorem

for a Discrete Memoryless Channel

We saw in Sectién E that the Gallager bound (47) on PB|i’
when optimized by choice of p, is strictly better than the
union Bhattacharyya bound (40), except when p = 1 is the
optimizing value in which case the bounds coincide. Thus,
averaging the Gallager bound over an ensemble of codes (as we
are about to do) should in general yield a better bound on E[PBIi]

than that which we obtained in the previous section by averaging

the union Bhattacharyya bound.

As before, let PBIi denote the block error probability of

some ML decoder for the block code (ﬁl' -+«sr Xy) of length N

3.2'
used on a particular discrete channel, given that 2 = i so that
.9 is the actual transmitted codeword. Rather than bounding
E[PBIi] directly over the ensemble of codes, it turns out to be
more convenient to begin by bounding the conditional expectation
of PBIi given that the i-th codeword is some particular vector x'.
The Gallager bound (47) gives immediately
1 1

—_— M —_—

1+ 1+ -
E(Py ;1%,=x"]< § Py (xlx) ™" E|{] P (z]%5) o 17 (82

B|i Y|x LTy x I
Y =~ ?‘1 S
J¥i

for all p > O. We see now the reason for conditioning on X.=

namely so that the expectation could be moved inside the factor

leé(zlg) in (82).

Next, we note that f(a) = ap is convex M in the interval

& > Owhen O< p < 1, since then £"(a) = p(o-1)aP 2 < oO.

Hence, Jensen's inequality implies that

5.40 B

r p ' P
BELCTIR, = x'] < (e[L1%; = x'11°, ogps (83) =
whenever the quantity at the places denoted by "." is nonnegative. <
We can thus use (83) in (82) to obtain [
1 1 0

- 1+ 1+p = o
ElPp); %= x x'] <)2, Py x lx" {JZ E[Py|x<xléj) X=x']¢, 0€p<1. (84) [
B JFi _
To go further, we must specify our ensemble of codes. We -

choose the same ensemble as we did in the previous section; we

assign probabilities to all possible encoders so that (72) is

satisfied, i.e., so that the codewords enjoy pairwise independence. g

Now, because Ej is statistically independent of Xi’ the con-

ditioning on X, = x' does not affect the expectation in (84).

Thus, [
L. R
K l+p T 1+p
=} P Y| ¢ (X (xlx)l+p Qy (x) . (85) .
x ='= 2
Substituting (85) into (84), we find E
l
0P| 1%m 27 < Z v el o) {Z Py gl Qx(x)} Ospsl. (86) [

b

Finally, we make use of the theorem on total expectation to

write [T

Blrg)sl = L, Bl lx = = log . ' (87)

Using (86) in (87) now gives B
1

-— 1
1+p I—- P

We then observe that, because x and x' are only dummy variables

ranging over the set of possible codewords, the summations over

b= &

==

e -

==

J

5.41

x' and x in this last inequality are identical. Thus, we have

shown that

l

Eroy 1+p
p 1+
E[PBIiI s (M=1) ; [E Pyx(2l® o (X)] , 0 <P <1, (88)

Inequality (88) is Gallager's celebrated random coding bound
and applies for ML decoding of any block code on any discrete
channel. For the special case of a DMC and the choice (55) for

Q (88) reduces to

XI

0 f—- 1+pP\N
E@BH < (M-1) {E[EPYHQWM Q(m] } 0<S P11, (89)

If we now drop subscripts according to our usual convention and

define Gallager's function by

- :
E,(0,Q) = -log, I [Iety|0'™® o 1t*?, (909
Yy X
then we can rewrite (89) as
0 -N Eo(prQ)
EEPB'il < '(M-l) 2 : ’ o) \< p \< ll (91)

a form that we shall later find convenient in our study of tree
and trellis codes. To make (91) even more suggestive, we recall
the definition (1) of code rate and make use of the trivial

inequality
M-1)° ¢ MP = 2PNR (92)
which we then use in (91) to obtain the fundamental inequality

-N[E_(p,Q) -0R]
E[PBll $ 2 © ’ 0] \< P

A

1, (93)

which holds for i =1,2,...,M. We can now use (93) in (16) to

establish the following result.

Gallager's Random Coding Bound for Block Codes: Over any

ensemble of block codes with M = ZNR codewords of length N for
use on a given DMC, wherein each code is assigned a probability
in such a way that the codewords are pairwise independent and
that the digits in the i-th word are statistically independent
and each is distributed according to a given probability
distribution Q over the channel input alphabet, then, regardless

of the particular probability distribution P_ for the codewords,

Z
the average block error probability of these codes for ML

decoding satisfies

-N{E_(p,Q) - pR]
E[pB] s 2 °© (94)

for all p such that O € p ¢ 1. In particular,

~-N EG(R) !
efpg] < 2 (95)
where
E;(R) = max max [E_(0,0) - PR] . (96)
‘ Q osesl °

The quantity EG(R), which will be called the Gallager ex-

ponent in honor of its discoverer, has many interesting and

important properties. Not unexpectedly, we can see easily

that

EG(R) > EB(R) = RO-R (97)

with .equality if and only if ¢ = 1 is maximizing in (96). This
follows from the fact that, as a comparison of (90) and (61)
shows,

mgx Eo(l,Q) = Ry- (98)

Tt is similarly unsurprising in light of (64) that [see

Problem 5.13]

*4e 0.9

=

[
[
L

= |

-

L

&3

J

5.43

i

Q(x) = , all x € A, when the channel is symmetric

Eo(o,Q) for all p > 0 ; (99)

but the reader is cautioned that, in spite of (63), the choice
QX(O) = Qx(l) = 1/2 does not in general maximize EO(D,Q)

for P such that 0 $ P <1 for an unsymmetric binary-input
channel. Othe; interesting properties of EG(R) can be seen con-

veniently by writing

EG(R) = max EG(R,Q)) (100)
Q
where
Eg(R,Q) = max [E (0,0) - pR]. (101)
osP<L ©

It is not particularly difficult to show [see Problem 5.14]

that EG(R,Q) has the form shown in Fig. 3 as a function of R,

that is:
(1) The R = O intercept is Eo(l,Q), i.e.,
EG(O.Q) = Eo(l.Q)-
(ii) EG(R,Q) is linear with slope -1 in the interval

O RS RC(Q), where

BE_ (P, Q)
Rc (Q) = Y . (102)
p=1
(iii) EG(R,Q) is convex U and positive in the interval

O0< RS IQ(X;Y) where, by definition,

I, (X;Y) = I(X;Y) (103)
Py =0

is the average mutual information between the input X and output
Y of the DMC when the input probability distribution is chosen

as Px(x) = Q(x) for all x € A,

Eg(R,Q)

E (1,Q)

]
: .
0 R,(@) E (1,Q) I,(X:¥)

Fig. 3: The general form of the exponent EG(R,Q)
as a function of R.

t

It follows immediately from (100) that EG(R) is just the

upper envelope of the curves EG(R,Q) taken over all Q. It is

thus evident from Fig. 3 that EG(R) has the form shown in Fig. 4

7

that is:

(1) The R

O intercept is R_, i.e.,

EG(O) max Eo(l,Q) = R

. (104)
(0]

Q

(i1) EG(R) is linear with slope -1 in the interval OsRsRc

where

BEO(QIQ)
R = max

¢ Q(Roachieving) . 9p

(105)
p=1

where the maximum is taken only over those channel input prébability

distr%butions that achieve RO, i.e., which maximize Eo(l,Q). [it

is the Ffashion to call Rc the "critical rate" and to denote it

by "Rwrj?"" However, it is "critiecal® only to designers of bounds

& e =5 G

J

=8

 F— |

e

==

—

)} SR O &I e

| e S s

]

5.45

on error prokability, not to designers of communications systems,

so we have shunned this terminology and will leave Rc nameless.l

(iii) EG(R) is convex U and positive in the interval O<RgC

where C is the capacity of the DMC.

E;(R)

]

o)

Fig. 4: The general form of the Gallager exponent
E;(R) for a DMC. !

The fact that EG(R) > 0 for R < C not only establishes the
coding theorem for a DMC as stated in Section 4E, but also gives
us the additional information that, fof any fixed code rate R
less than capacity C, we can make PB go to zero exponentially
fast in the block length N by the choice of an appropriate code,
i.e., one for which Py is no more than E[bB]. Moreover, the same
argument by which we proved the existence of "uniformly good"

block codes in the previous section [i.e., codes for which

(PB)wc is no more than 4 times E[PB] for equally likely codewords],

5.46

can now be applied to Gallager's random coding bound for block

codes and gives the following strong result.

Gallager's Coding Theorem for a DMC: For any code rate R and

blocklength N, there exist block codes with M = 2NR codewords

of length N for use on a given DMC such that the worst-case (over
assignments of probabilities to the M codewords) block error pro-
bability with ML decoding satisfies

-NE . (R)

(PB)wc < 4 ¢ 2 (106)

where EG(R) is defined by (96) and satisfies
EG(R) >0 for O <R <,
where C is the capacity of the DMC.

This is perhaps the best point to remind the reader that,
as was mentioned in the previous section, channel capacity C in
spite of its fundamental role is in some sense a less informative

single parameter for characterizing a DMC than is the cut-off

rate RO' The reason is that knowledge of C alone tells us nothing
about the magnitude of EG(R) for some particular R < C [whereas
RO specifies EB(R) = RO-R for all R < RO.] The problem with C
alone is that both situation§ shown in Fig. 5 are possible,

namely

and

R, << C,

as the reader can verify by solving Problem 5.15.

[
[
L

3

== R
o e R

B 0] C C

"* (a)RO=C.

Fig. 5: The two extreme forms of Gallager's error exponent
for discrete memoryless channels.

Finally, we should mention that, although block codes are
easy to visualize and fit well into certain data formats commonly
used in digital data communicafions, there is nothing fundamental
that requires us to use block codes on noisyv channels. As we shall
see in the next chapter, there are certain real advantages in

using "non-block" codes. Our efforts in this chapter, however,

& W O, M/, =

have hardly been wasted because we will make use of our error

bounds for block codes in our derivation of the corresponding

bounds for non-block codes.'

Chapter 6

TREE AND TRELLIS CODING PRINCIPLES

A. Introduction

In this chapter, we consider two "non-block" coding
techniques for noisy channels, namely tree coding and trellis
coding. In one sense, each of these techniques is a generalization
of block coding. But in another sense (and the one we will
initially pursue), tree coding and trellis coding can both be
viewed as special cases of block coding. While there is no clear
analytijcal distinction between tree and trellis codes on the
one hand and block codes on the other, there is an enormous
difference in the design considerations that underlie these
coding techniques. In many applicat%pns, tree codes and trellis
codes have been found much superior to "traditional" block codes.
As we shall see in this chépter, these "non-block" codes are also
superior in certain theoretical réspects as well. We shall return
to this comparison after we have developed a better understanding

of "non-block" coding techniques.

B. A Comprehensive Example

Rather than beginning our discussion of "non-block" codes
with precise definitions and a general analysis, we prefer to
begin with a simple example that nevertheless embodies all the
main features of non-block coding. Our starting point is the
binary "convolutional encoder" of Fig. 1. In this figure, the
information symbols (Ui) and the encoded symbols (Xi) are all

binary digits. We can of course use this encoder on any binary-

&

=R &3

-me) O

= &

il

N =

-

D am m o

e = W oD

3

input channel. The adders shown in Fig. 1 are "modulo-two adders",
i.e., their output is 1 if and only if an odd number of the inputs
have value 1. During each "time-unit", one information bit

enters the encoder and two channel input digits are emitted. The

rate of this coding device is thus given by

R, = 1/2 bit/use (1)

where the subécript denotes "tree" or "trellis" -- as we shall
soon see, this same device can serve as an encoder for either
kind of non-block code. The contents of the unit-delay cells as
shown in Fig. 1 afe their current outputs, i.e., their inputs
one time-unit earlier. The “"serializer" in Fig. 1 merely inter-
leaves its two input sequences to form the siﬁgle output

sequence Xl, X2, X3,... that is to be tfansmitted over the channel.

' % ' modulo-two
o~ 2i-1] :29_. adder

E] unit-delay
cell

H
)
Uy o1 Y%-1 | %i-2) .
-
o
ol
“
a
%24
\Dr ’P"‘
Fig. 1l: An Rt = 1/2 Convolutional Encoder

The input sequences to the serializer in Fig. 1 can be
written
Xy5-1 = U, DU, _, i=1,2,... (2a)

and :
X,y = Ui@Ui_lGBUi_z, i=1,2,... (2b)

where @ denotes modulo-two addition. The right sides of (2a)
and (2b) can be viewed as a "convolution" of the input sequence
Ul’ U2’ U3,... with the sequences 1,0,1,0,0,... and 1,1,1,0,0,...,

respectively, which explains the nomenclature "convolutional

encoder". We shall later have much more to say about the mathema-

tical structure of such encoders.

The "state" of a system is a description of its past history
which, together with specification of the present and future in-
puts; suffices to determine the present and future outputs. Thus,

for the encoder of Fig. 1, we can choose the state at time 1 to

be the current contents of the delay cells, i.e.,

o, = EUi—l, U, ol (3)

[In fact we can always choose the state to be the current contents

of the delay cells in any sequential circuit, i.e., in any device

built up from unit-delay cells and, memoryless logical operations.]

We have tacitly been assuming that the initial state of the

device in Fig. 1 was "zero", i.e., that

a, = [0,0] (4a)
or, equivalently, that

U, =U, = 0. (4b)

Thus, U., and U, are "dummy information bits" since their values

are not free to be determined by the user of the coding system.

(1) A Tree Code

Suppose we decide to use the encoder of Fig. 1 to encode

true Information bits only for Lt time-units, after which we

2ncode "dummy information bits® (all of which are zero) during a

[
|
b

S|

| Ty

J

/ BB 88 &=

£ &= W 5

J

tail of T time units. Choosing for our example L,=3 and T=2, we

t

would then have only 3 true information bits (Ul, U, and U3) and

2

we would have specified
U, =U. =0 . (5)

Suppose further that we take the encoder output sequence over

these Lt + T 5 time-units, namely

=[x, Xyoeees X0] o (6)

as the codeword in what is now a block code with K = 3 information

bits and codeword length N = 10. The fact that we have chosen to
encode true information bits for only Lt out of the Lt + T time-
units in which the codeword is formed has caused the rate R of

the resulting block code to be related to the nominal rate Rt

of the tree [or trellis] encoder by

R =

Lt+T Rt' ' (7)

For our example, we have
R=S =— ==, bits/use (8)

In a practical tree [pr trellis] coding system, one generally

has Lt >> T [in fact, L, = « is not unusual for trellis coding,

t

as we shall see later] so that R and R_ are virtually identical,

t

unlike the case in our simple example here.

We now come to the heart of the matter, namely the special
structure of the codewords in our block code. First, we note

that X1 and X2 depend only on Ul'

depend only on U1 and U2. Finally, we note that X5, X6""' Xlo

are of course determined by the values of all three information

Next, we note that X3 and X4

U. and U..

bitS Ull 2 3

Thus,

we can show the 23 = 8 codewords in

this block code by means of the binary rooted tree in Fig. 2.

Starting at the root node, we leave by the upper branch if U, =1

but by the lower branch if U

1

= 0. These two branches are labelled

1

with the corresponding values

Ol o0 o 11 ,
10
10 11 0o
O B °
11
00 0ol 11
- v -
o1
1
11 00 00 .
—- > .
Path determined
.xﬂ? by information bit
=T 10 10 11
B & -2
Lk J 0
sy
ol Il 00
& ? 9
Qo
' 1 11 o1 11 -
. * <0
00
00 00 00
G— o
Ul U2 U3 o o «+— Information Sequence

Fig., 2:

The L = 3, T = 2 Tree Code Encoded by the

Convolutional Encoder of Fig. 1.

of x1 and x2. Arriving at the node at depth 1 determined by U

ll

we leave: again by the upper branch if U. = 1 but by the lower

2

if U, = 0. These branches are labelled with the corresponding

values of X. and X ..

3 4

the podes at depth 2 determined by U

«ode at depth 3 determined by U

Similar comments apply when we arrive at

and U..

1 2 But when we arrive

1 U2 and U3, the values

=3

S

S

I
[
L
lg

e

—

—

e

e =68

e2d eEed

i

N

of X7 and X8 are uniquely determined since we are now in the

tail of the tree where we have demanded that U, = O, Likewise,

4

there is only one branch leaving the nodes at depth 5 since

O.

we have also demanded that U5

The fact that the 28 = 8 codewords in our block code can be
placed on a rooted tree in the manner shown in Fig. 2 is, of

course, why we call this code a tree code. We shall see later

how this special structure of the codewords can be used to

simplify decoding.

(2) A Trellis Code

We have not really discussed how we found the appropriate
encoded digits to place on the branches of the rooted tree in
Fig. 2. We could of course have simply considered inserting each
choice of the information sequence [Ul, U2' U3] (with
U_l = UO = U4 = U5 = 0) into the encoder of Fig. 1 and calculated
the resulting codeword [Xl’ X2, ceey Xlo . If we were trying to
save ourselves effort, we would soon discover that it paid to
remember the state of the encoder at each step so that after
having found the codeword for [Ul' Uz, U3] = Ll,l,o] say, we

would not have to start from the beginning to find the codeword

for Lu,, u,, u] = [1,1,1].

In Fig. 3, we have redrawn the tree of Fig.'z, enlarging
the nodes to show the state of the encoder at the time when the
corresponding information bit is applied. Notice from (3) that
this state depends only on the information sequence (and not at
all on the encoded digits on the branches leaving the node.)

Thus, the state labels for the nodes in Fig. 3 can be inserted

before we begin to worry about what encoded digits to put on
each branch. To simplify calculation of these encoded digits,

it is helpful to consider the state-transition diagram of the

encoder as shown in Fig. 4. The nodes in this diagram correspond
to the states [Ui_l, Ui-2] of the encoder. The branches are
labelled with the encoder input Ui that causes this transition

and with the resulting encoder output [XZi—l’ X2i] in the

manner Ui/[xzi—l’ x2i]' From this diagram, it is a simple
matter to read off the appropriate encoded digits to place on

each branch of the tree in Fig. 3.

o1 10 11
BBR 571 |
. 1T o1 [50]
10 11 =~ OO0
N | L [o1} |50} {00
—19]
00 ol 11
[To]—o1] {o0]
[°! ot
11 00— 00
l _ [o0] {00] [50] 1
0]
{o1] [o0] 0
ll “
0
' T 0122105
00
‘——00]
11 0l ;—— 11
= ll 10 r' {o1] ,' 00]
-oo 00 00
3571 ToTel|
J]ool lool {oo[
Uy U, Uy 0 0

Fia. 3: The Lt =3, T = 2 Tree Code of Fig. 2

Redrawn to Show the Encoder States at Each Node

B

B W 0 G G G5

E‘.:' “ﬂ'

m— |

=

/| = &S

1/01

| 11 | ‘

l/lqu///// 0/10
0/01

10

1/11 0/11

0/00

Fig. 4: The State-Transition Diagram for the
Convolutional Encoder of Fig. 1.

Having now drawn our tree as in Fig. 3 to show the encoder
states, we notice that at deéth 3, each of the 4 possible states
appears twice. But since the present and future output of the
encoder depends only on the present state and the present and future input, we car
treat these two appearances of each state as the same node in
a new diagram for showing the encoder output sequences (i.e.,
the codewords.) We can likewise reduce each distinct state to
one appearance at depths 4 and 5 in the tree. The result of our
insistence that each state appear at most once at each depth
is the diagram of Fig. 5. The new diagram is, of course, not a
tree, but rather a structure that has come to be called a
trellis. In the tree, branches had a "natural direction" away
from the root node. But we need to show this direction explicitly

by arrows on the branches of the trellis -- or by agreeing that we

shall always draw our trellises (as in Fig. 5) so that the -
direction is always from left to right. Notice that all paths
through the trellis end at the same node, which we shall call
the toor node (toor = root spelled backwards) and which we

indicate on the trellis by an upside-down ground symbol. R

Fig. 5: ‘The Lt = 3, T = 2 Trellis Code Encoded by the '
Convolutional Encoder of Fig. 1.

W2 shall call a code that can be placed on a trellis in E

the manner shown in Fig. 5 a trellis code. The codewords are

the sequences of digits on the paths from the root to the toor

node. It is important to notice that the trellis code of Fig., 5

is exactly the same block code as the tree code of Fig. 2. The [

ZK = 8 codewords are exactly the same, and the same information

sequenca.[Ul,Uz,U3] will give rise to the same codeword
[kl' Xyreeo xlOJ in both codes. It just so happens that the iy
codewords in the tree code of Fig. 2 possess the special structure

taat permitted them to be displayed as the trellis code of Fig. 5.

This would not have been the case in general if we had formed
the tree code by placing arbitrarily chosen binary digits on the

= tree in Fig. 3 (see Problem 6.1). Thus, only some tree codes

are also trellis codes. Which ones? The alert reader will have

L }
! J

noticed that the tail of T = 2 dummy information bits that we used

with the encoderof Fig. 1 just sufficed to drive the encoder back

=3

to the zero state after the codeword had been formed -- this is

why the paths in the tree of Fig. 3 all ended in the zero state,

and this in turn is why we were able to put this particular tree

code on a trellis diagram.

We have.already mentioned that the tree structure of the

codewords in a tree code can be exploited in decoding. The reader
is not wrong if he suspects that the further trellis structure

can likewise be exploited in decoding.

(3) Viterbi (ML) Decoding of the Trellis Code

The trellis code of Fig. 5 can of course be used on any

binary-input channel. Suppose then that we use this code on

a BSC with crossover probability €, where 0< €<1/2, and that

we wish to use ML decoding. From Example 4.1, we recall that

for the BSC
_ da(x,y)
riyln = -6V (55 , (9)
where d(x,y) is the Hamming distance between x and y. But

n 1 £
o<€<2@o<l_€<1. (10)

It follows from (9) and (10) that choosing i to maximigze

Ple(zlii) is equivalent to choosing i to minimize d(x,y). Thus,

we have the following general result:

ML Decoding Rule for a Block Code on a BSC with O<& < 1/2:

For each received N-tuple y, choose F(y)=i where i is (one of)
the index(es) that minimizes d(§i,z) or, equivalently, that

maximizes the number of positions in which X; and y agree.

For our trellis code (which is also a block code of length
N = 10), we can perform ML decoding by finding, when Y =y is
received, that path through the trellis of Fig. 5 which agrees
with y = [yl,yz,...,yla] in the most positions, then taking our
decisions [61,62,63] as the corresponding information sequence
for that path. [We have now tacitly assumed that our decoder
should decide directly on the information sequence, rather than
only on the index Z of the codeword as we considered previously.]

A specific case, namely
y=[o101010111], (11)

will be used to illustrate how ML decoding can easily be

implemented.

Our approach to ML decoding will be to move through the
trellis of Fig. 5, "remembering" all the subpaths that might
turn out to be the prefix of the best path through the trellis,
i.e., the one that agrees with y in the maximum number of
positions. Our decoding metric, i.e., our measure of goodness
of any subpath, is just the number of positions in which that

subpath agrees with the received sequence.

In Fig. 6, we show how ML decoding can be performed on

the received sequence of (11). We begin at the root where the

metric is zero; we show this in Fig. 6 by placing O above the root

—

i

B &3

- O 65

J

—

 —

==

N & R /| B ==

=3

o)

node. The subpath from the root to state [ld] at depth 1 agrees

in 1 position with y; we show this by placing 1 about the node
[10] at depth 1 in the trellis. Similarly, the metric is 1 for
state [00] at depth 1. The branch from state [10] at depth 1 to
state [ll] at depth 2 has no agreements with Y, SO the metric is
still 1 at the latter state. The branch between state [00] at
depth 1 to state [lO] at depth 2 has one agreement with Y. so

the metric is increased to 1 + 1 = 2 at the latter state. Similar-
ly, the metric for states [Ol] énd EOO] at depth 2 is found to.

be 3 and 2, respectively.

At depth 3, something new and interesting begins to happen.
There are two ways to reach state [ll] at depth 3. Coming from
state [ll] at depth 2 would give a metric of 1 + 2 = 3, but coming
from state [10] at depth 2 wouid give a metric of only 2 + 0 = 2
for state [11] at depth 3. But we now see that the latter sub-
pPath could not possibly be tHe prefix of the best path through
the trellis because we could do still better if we replaced it
by the former subpath. Thus, we discard the poorer subpath into
state [ll] at depth 3 (which we show by across x on that subpath
as it enters state [ll] at depth 3) and, since we now are left
with only one subpath into state [ll] at depth 3 we show its
metric, namely 3, above that state. We repeat this process of
discarding the poorer subpath into each of the other three
states at depth 3. Note that we are certain that we have not

discarded the prefix of the best path through the trellis.

We now move to depth 4, where we first discard the poorer

subpath into state [Ol], which then gives a metric 4 + 2 = §

for the better subpath. Something new again happens for state
[OO] at depth 4; the two subpaths into this state both have
metric 5. But we are then free to discard either subpath and
be sure that we have not eliminated all subpaths that are pre-
fixes of best paths (in case there is a tie for best). We
chose in Fig. 6 quite arbitrarily to discard the upper of the

two subpaths into state [OO] at depth 4.

Finally, we reach depth 5, where we discard the poorer path
intQ state Eod], the only state at this depth. Our process of
discarding subpaths was such that we know there rehains at least
one best :-path through the trellis. But in fact there remains
only one path through the trellis so this must be the best
path! [In fact, it is the unique best path because, in this
example, the "winning path" was neve; involved in any ties
along the way.] It is easiest to see this remaining path by
moving backward from the toor node: following the branches not
"cut” by :a cross X, We find this path corresponds to the in-

formation sequence [1,0,1] so our ML decoding decision is

~

[Ul, U, U3l = [1, o, 1].

[
t

= e

~d

Rec'd Word: 01 01 01 01 11

A A A
Decisions: U,= 1 U= 0 u, = 1

Fig. 6: An Example of Viterbi (ML) Decoding on a BSC with
O <€< 1/2 for the Trellis Code of Fig. 5.

|
)

The above systematic procedure for performing ML decoding of

a trellis code is called the Viterbi algorithm, in honor of its

inventor. It was not noticed until several years after Viterbi

introduced this decoding technique that the Viterbi algorithm

=2 can be viewed as the application of Bellman's dynamic programming

method to the problem of decoding a trellis code.

C. Choosing the Metric for Viterbi Decoding

In the previous example, it was obvious from the form of
the ML decoding rule how we could choose a convenient "metric"
to use with the Viterbi algorithm. We now shall see how one can

choose such a metric for any DMC. Our metric must possess two

features: (i) It must be an additive branch. function in the sense

that the metric for any subpath in the trellis must be the sum
of the metrics for each branch in that subpath, and (ii) it
must have the property that the path through the trellis (from

root to toor) with the.largest metric must be the path that

would be chosen by a ML decoder.

It is easy to see how to choose such a. metric for any DMC.
Let y = [yl, yz,...yN] denote the received word and let X =
[xl,_xz, .o xN] denote an arbitrary path through the trellis,

i.e., an arbitrary codeword. A ML decoder for a DMC must choose

X to maximize
N
lez(xlﬁ) = nzl PYIX(YnIXn) (12)

or, equivalently, to maximize

ez

log leé(xlg) log PYIx(ynlxn). (13)

n=1

We see now that we could, in fact, simply take log PY]X(ynlxn)

as the metric for each digit xn in the path, the branch metric

being just the sum of the metrics on each digit in the path.

Howevsr, this is not usually a convenient metric. For convenience

‘n lnplementing the VA, one usually prefers that the metric have

«wo further properties: (iii) All branch metrics are "small"

r—

=R 3

- T

|

= e

3

ke

]

L

— P iy
[J L | \

——a,

6.16

nonnegative integers, and (iv) the smallest possible branch metric

is O for each possible received symbol.

To obtain a metric with these two additional properties,
we begin by noting that maximization of (13) is equivalent to
maximization by choice of x of

N N

o log leﬁ(zlﬁ) + anzl £(y) = nzla[log Py xYplxy) + E(y)] (14

where o is any positive number and where f is a completely
arbitrary real-valued function defined over the channel output

alphabet. It follows from (14) that if we choose, for each vy,

£(y) = - log[min PYIX(ylx)], (15

then the smallest digit metric, and hence also the smallest branch
metric, will be O. We are then free to choose & to make the digit
metrics (and hence also the branch metric) integers -- in fact
we usually settle for the smallest o such that the exact branch

metrics are well-approximated by integers. We summarize these

observations as:

Viterbi Decoding Metric for a DMC: To perform ML decoding of the

received word y = [yl,yz,...yﬁ] of a trellis code on a DMC, the
metric for any subpath can be taken as the sum of the digit metrics,

u(xn,yn) for the digits X in that subpath where

uix,y) = aflog Py (vlx) + £(y)] (16)
for any positive a and any real-valued function f. Moreover, the choice (15) for f

guarantees that, for each value of y, the minimum digit metric is O.

Example l: For the BSEC of Fig. 7,

min PYIX(YIX) = .02
X,y

so that (15) gives

6.17

£(0) £(1) = - log(.02) = 5.64

£(a)

- log(.07) = 3.84

where we have chosen the base 2 for our logarithms.

We can thus construct the following table.

table for %

log P(y|x)+ £(y) Y 0 1
0 5.50 0
A 0 0
1 0 5.50

will yield integer metrics as follows:

X
u(x,y) metric table vy 0 1
0 | 1 o
A 0 0
1 0 1

In fact, the reader should see that this same final metric

table will result for any BSEC for which P (0jo) > p

Y| X

.91

.07

}
.91

Fig. 7: The Binary Symmetric Erasure Channel (BSEC) of Example 1.

B G .-

= &3

To check his understanding of the VA, the reader should

now use the VA to perform ML decoding of the trellis code of

Fig. 5 when

y={000a100a01 4]

- is received over the BSEC of Fig. 7. Using the metrics of

il Example 1, he should find that

[6,, 6,, 03] = [0, 1, 1]

is the (unique) ML decision and that the total metric for the

a
@ corresponding codeword is 6.

D. Counting Detours in Convolutional Codes

In the next section, we will develop a tight upper bound
on the bit error probability of a convolutional code when used
with Viterbi decoding on a DMC. The key to this bound is the

enumeration of "detours" from the "correct path" in the trellis,

which we now consider.

Suppose that we had decided to drive from Ziirich to Paris
and had indicated our intended route on a road map, but when we
had actually made the trip we were forced to leave this route in
several places because of road construction, etc. Suppose then
that after the trip we had indicated our actual route on the
same rxoad map. We would then say that we had taken a "detour"
at each point where we had left our intended route, and that
each "detour" had ended just when we{returned to a point on the
correct path -—- even if another "detour" immediately began!

The concept of a "detour" in a trellis code is quite the same

as that for a road map.

Suppose that we had used the Rt = 1/2 convolutional encoder

of Fig. 1 to encode Lt = 5 information bits before inserting
the tail of T = 2 dummy information bits to return the encoder

to its zero state. Suppose further that, for alparticular trans-
mission, the information bits were all zero so that the all-zero

path (which we denote hereafter by 0) through the trellis is

the correct path in the sense that the decoder correctly decodes

if and only if it chooses this path. In Fig. 8, we show various

possibilities for the decoded path, the decoded path being shown

by dashed lines for those branches where it differs from the

correct path. The decoded path of Fig. 8(a) contains one detour

=

s 3 =8 a2

|

b

from the correct path; the detour begins at node 1, has Hamming
distance d = 6 from the corresponding segment of the correct
path, and contains i = 2 information bit errors since the first
and thirdldecoded information bits are both 1. The decoded path
of Fig. 8(b) has a detour beginning at node 2 that also has

d =6 and i = 2; invfact we see that this detour is essentially
the same as that in Fig. 8(a), differing only in the point where
the detour begins. Finally, the decoded path of Fig. 8(c) con-
tains two detours, one beginning at node 1 and the other at node
4. Notice that there are two separate detours even though the
decoded path has no branches in common with the correct péth.

A detour begins at a node where the decoded path leaves the correct

path and ends at that node where the decoded path again meets

the correct path, even if another detour immediately begins!

We now wish to count the number of detours with a given
distance d and given number i of information bit errors that
begin at the j=-th node of the correct path. We begin by assuming
that O is the correct path and will show later that, because
of the "linearity" of a convolutional encoder, we would get
the same count had we considered any other path through the
trellis as the correct path. It should be clear that the count
will depend on Lt and that we will get an upper bound on the
count for any finite trellis if we consider Lt =.w. Moreover, when
Lt = o, we see that the detours that begin at node 1 are
essentially the same as those that begin at any other node [in

the sense that the detour of Fig. 8(b) is essentially the same

as that of Fig. 8(a)] because of the "time-invariant" nature of

2T N

/ Oy OO/
’

N/
< oy o]
\((

;o \
00 00 00 00 00 . 00 00
00 00 00 }—-"t00 }—o0o0 {00

(a) A detour with distance d = 6 from correct path containing

i = 2 information bit errors, beginning at node 1.

[T}
/ \O(OO/ \OJ
/ N / N

~/ Mo} 2
N
/

. 00 00 00 00 00 00 . 00
[OC} 00 } {60 [60 }—-{00 }—{00 }—{ 00 =+ 00]

(b) A detour with @ = 6 and 1 = 2, beginning at node 2.

o, O]
~,
y; \ ¢
°
e e 1 / \
N
~ N ,:” \
~/ {:I:L\g / | O1] o
’ \\? N

AN

' /
00 00 OO\ 00 00 00 00
[oo}— 00}—00 }——{00 }—{00}—{350 oo} (00

(c) Two detours: the first with 4
the second with 4d = 6 and 1 =

= 5 and i = 1 beginning at node 1,
2 beginning at node 4.

Three possible decoded paths (shown dashed where
different from the correct path) for the L = 6, T = 2
trellis code encoded by the convolutional encoder of
Fig. 1 when O is the correct path.

=

- S &8

8

0 89 &=

L J v

o

>

| -

R e Ohm e =

convolutional encoder. Thus our interest is in the gquantity

a(d,i) which we define as

a(d,i) = number of detours beginning at node 1 that have
Hamming distance 4 from the correct path, O, and
contain i information bit errors in the L, = o

t
trellis for a given convolutional encoder.

It is not hard to see from the trellis of Fig. 5 (extended
conceptually to Lt = ») that a(d,i) = 0 for 4 < 5, that

a(5,1) = 1 and that a(6,2) = 2. But we need a systematic approéch
if we are not going to exhaust ourselves in considering all d and i, even for sw

a simple convolutional encoder as that of Fig. 1

The secret to a simple evaluation of a(d,i) iies in the
state-transition diagram of the convolutional encoder, such as
that of Fig. 4 for the encoder of Fig. 1. We have redrawn in
Fig. 9 this state-transition diagram after first removing the
2ero state with its self-loop, then relabelling each branch
with Ii Dd where i is the number of non-zero information bits
for this transition (and hence is either O or 1 for a con-
volutional encoder with a single input), and d is the number of
non-zero encoded digits (and hence is O, 1 or 2 for an encoder
giving two encoded digits per time unit) or, equivalently, the
Hamming distance of this branch from the all-zero branch. Thus,
we obtain a flowgraph such that the pPossible paths from input
terminal to output terminal correspond to the possible detours
beginning at node 1 because the first branch of such a path
corresponds to the immediate departure from the zero state and
the last branch corresponds to the first return again to that

state. Moreover, the product of the branch labels for such a

path will equal Ii Dd where i is the total number of non-zero -
information bits on this detour and d is the total Hamming

distance of this detour from the corresponding segment of the
correct path O. We shall refer to this flowgraph as the detour L

flowgraph for the convolutional encoder. But the transmission

gain of a flowgraph is, by definition, the sum over all paths *

from the input terminal to the output terminal of the product

of the branch labels on each path. Thus, we have proved: g

Lemma l: The transmission gain, T(D,I), of the detour flowgraph

for a binary convolutional encoder is given by

@ @

T(o,1) =)} I a(a,i) 1t o?. (17))

i=1 d=1

-

Fig. 9: The Detour Flowgraph for the Convolutional Encoder |
of Fig. 1.

For instance, for the detour flowgraph of Fig. 9 we find, -

by using any of the standard means for calculating the trans- I

nission gain of a flowgraph, that

==

I Ds

T{D,I) = 1 -3 1ip (18)

* "paths”, in the sense used here, can contain loops.

|
L - L ’

- .

e == & -

Oor, equivalently,

T(D,I) = IDS(l + 2ID + 4I2D2 + ... (19)

Thus, we see that, for the convolutional encoder of Fig. 1,

277, d =i+4, 1 =1,2,3,...
a(d,i) = (20)

o, otherwise.

It remains now to justify our earlier claim that a(d,i)
has the same value when defined for an arbitrary correct path

rather than for 0. To show this, we let g(u) denote the code

word that is produced by the convolutional encoder when the
information sequence is 4. But a convolutional encoder is

linear in the sense that for any two information sequences,

u and u',

J(u@u') =g @ g(u') (21)
where the "addition".is component-by-component addition modulo-

two. Suppose that u is the information sequence for the correct

path and that u' is that for a decoded path with a detour
beginning at node l, i.e., u and u' differ in the first time

unit. We then have for the Hamming distance between this detour

and the corresponding segment of the correct path

d(g(u),g(u"))

d(g@ @ g, g qg(u"))
d(0, g(u®u")) (22)

where we have used the fact that adding a common vector modulo-

two to two vectors does not change the Hamming distance between

them, and then made use of (21). But u @ u' is an information

Sequence that is non-zero in the first time unit, i.e., the

information sequence for a detour beginning at node 1 when (¢}

is the correct path. The following result now follows from (22)

and our previous observations about finite trellises.

Lemma 2: For any correct path and any j, af{d,i) is the number

of detours beginning at node j that have Hamming distance 4 from
the corresponding segment of the correct path and contain i in-
formation bit errors in the Lt = o trellis for the given con-
volutional encoder, and is an upper bound on this number for
every finite Lt'

E. A Tight Upper Bound on the Bit Error Probability of a
Viterbi Decoder

We will shortly use T(D,I) as the basis for a tight upper
bound on the bit error probability, Pb' of a Viterbi decoder
for a binary convolutional code. First, however, we recall and
extend our understanding of two maéters that arose in our

discussion of block codes.

First, we recall the Bhattacharyya bound (5.26) for a block
code with two codewords. We note that for a binary-input DMC,
the .summation on the right side of (26) equals 1 for all n where

X = X but equals

_DB

|0) Py (y]l) = 2

v|x ¥ Y|x

I /P
y

for those n where X1n + Xon® But since the number of these
latter.-n is just the Hamming distance, d(§l, 52), between the

two codewords, we see that (5.26) implies:

Lemma 3: For a binary-input DMC and the code.(il, X,), the

worst-case block error probability for a ML decoder satisfies

o O BB &S

e

J

= =

a

=

G - G Gn G -

=

-D d(§_ 1 X)
(Pglye €2 5 T

(23)

where DB is the Bhattacharyya distance between the two channel

input digits and d(§l, 52) is the Hamming distance between the

two codewords.
Next,

we recall the definition (4.42) of the bit error

Probability of a decoder for a block code with K information

bits, namely,

1 K
Pb =¥ El Pe,i (4.42)

where Pe i is the probability of a decoding error in the i-~th
’

information bit. We now define Vi to be the indicator random

variable for an error in the i

-th information bit, i.e., Vi =1

when such an error occurs and Vi = 0 otherwise,. But then

Pvi(l) = Pe,l

so that

Efvi] = Pe’i.

(24)
Using (24) in (4.42), we find
K
1
P =k .1 E[V{]
i=1
K
AN
=z E |] v,
K i=1 i
r K
= E [() Vi)/K] . (25)
i=1

K
But the random variable Z Vi is the total number of information
=

bit errors made by the decoder so (25) can be stated as:

»

Lemma 4: The bit error probability of a decoder for a block [3

code equals the average fraction of erroneously decoded in-

formation bits.

We are now ready to derive a tight upper bound on Pb for Ls
a Viterbi decoder for the trellis code of length Lt + T branches

genergted by a convolutional encoder. We begin by defining the

random variable Wj as the number of information bit errors _ P!
made by the Viterbi decoder as it follows a detour beginning E
at node j. Naturally, Wj = 0 when the decoder does not follow .
a detour beginning at node j either because it is already on a ﬁ

detour that began earlier or because it follows the correct
L

- t
path from node j to node j + 1. Then) Wj is the total number
j=i
of information bit errors made by the Viterbi decoder so that [:
Lemma 4 gives
Lt .
P, = E[(.z Wj)/(koLt)], | (26) P
j=1
where k.o is the number of information bits per time unit that m
enter the convolutional encoder. Fbr the encoder of Fig. 1, kg =1
-- but of course we wish our treatment here to be general. B

Next, we define Bkj to be the event that the Viterbi decoder 7
follows the k-th detour at node j on the correct path (where the [
detours are numbered in any order). Letting dk be the Hamming i

distaice between this detour and the corresponding segment of

the correct path, we can invoke lemma 3 to assert that =
—D d L
- B, 'k
P B <
PlEg) S 207 7. (27) ~
Letting i, be the number of information bit errors on this detour,

k .

we see that 23

= a8

D W OO G =

e =2 =

6.28

i,, 1if B, occurs for some k
k Jk
Wj = (28)
O, otherwise .
Thus, (28) and the theorem on total éxpectation imply
ElW,| = i, P(B.,). (29)
[J] E x P(B)

Using (27) in (29) now gives

k
E(w.] S 7 i (2 Bk, (30)
3 k K

But, by the definition of aj(d,i), the number of indices k in

(30) for which ik =i and 4

can be written

x = d is just aj(d,i) so that (30)

-DB d
EW.]< 7 J1ia,(,1)(2 B (31)
J id]
But Lemma 2 states that
aj(d,i) < a(d,i) (32)
for all j. Using (32) in (31) and then (31) in (26), we have
finally

=D, d
1 . . B
Pp € 7 | g ia(d,i)(2 %)

, (33)
o i

which is our desired bound. Notice that (33) holds for every

Lt -~ even for Lt = ® when we never insert the tail of dummy

information bits to return the eéncoder to the zero state and

when Rt is the true information rate of the trellis code.

It remains only to express the right side of (33) in terms

of the transﬁission gain T(D,I) of the detour flowgraph.

Differentiating with respect to T in (17) gives

or
i

9 i -
i d

Comparing (33) and (34), we obtain the following result:

Theorem l: The bit efror probability for Viterbi decoding of

the trellis code generated by a binary convolutional encoder

used on a DMC satisfies

1 9T(D,I) 35
Py S k_ 3T (35)

provided that the power series on the right of (34) converges at
‘ -D
I=1and D = 2 B, where ko is the number of information bits

per time unit that enter the convolutional encoder, where T(D,I)
is the transmission gain of the detour flowgraph of the convolutional

encoder, and where DB is the Bhattacharyya_distance between the

two input letters of the DMC.
‘The bound (35) holds for all trellis lengths Lt (including
Lt = ») and all assignments of probabilities to the ko . Lt *in-

formation bits". The conditions which ensure convergence of the

power series are given in Problem 6.7.

For the encoder of Fig. 1, we find by differentiation in

(18) that
3T(D,I) _ __ D’
or (1-21D) %

& &

i
i

- e e &=

o | S

|

Suppose this convolutional code is used on a BEC with erasure

i probability §. Then (5.32) gives

2 =9

so that (35) becomes {(because ko = 1 for this encoder)

5
§
i P & ——
P71 - 282
[In particular, for § = 1/10, our bound becomes
L3

1 P < 1.56 x 107°

It has been determined from simulations that the bound of

(35) is so tight in general that it can be used to design
convolutional decoders for Particular applications without

appreciable extra complexity résulting from the fact that an

B - upper bound on Pb’ rather than the true Pb’ is used. This

should not surprise us in light of the tightness of the

Bhattacharyya bound on which (35) is based.

When the memory, T, of the convolutional encoder is very

small, it is practical to calculate T(D,I),

as we have done

here for the encoder of Fig. 1. For larger values of T but

still in the range where Viterbi decoding is pPractical (say,

_ koT < 10), it is impractical to calculate T(D,I) as a function

of D and I from the detour flowchart, although it is still

€asy enough to calculate T(D,I) for particular values of D and I.

» In this case, we can still make use of the bound (35) by

L approximating the derivative, for instance as

-D -D
~ T2 Bli01) - 7 B 99)
5 .02 d

9T (D, I)
N oI -D
I=1, D=2

(36)

which requires the evaluation of T(D,I) for only two particular
cases.

Finally, we should mention that when Lt = » (as is normally
the case for practical systems that use Viterbi decoders) we
do not want, of course, to wait until the end of the trellis

before announcing the decoded information sequence. Theoretical

considerations indicate, and simulations have confirmed, that

Pb is virtually unchanged when the Viterbi decoder is forced

to make its decisions with a delay of about 5 constraint lengths.

In tHis case, the decoded information bits at time unit j are
taken as their values in the information sequence for the

currently best path to the state with the highest metric at

time unit j + 5(T + 1).

S = o W

L

| Fa—

= B3

3 =

J

=]

L

= =

= e

= 8 W

F. Random Coding -~ Trellis Codes and the Viterbi Exponent

We are about to develop a random coding bound for trellis

codes which will show that, in an important way, trellis codes

are superior to ordinary block codes. To do this, however, we

must first suitably generalize our concept of a "trellis code",

The general form of what we shall call an "(no,ko) trellis

encoder with memory T" is shown in Fig. 10. At each "time unit",

ko information bits enter the encoder while no channel input

digits leave the encoder. Thus, the rate of the trellis code is

Rt = ko/no, (bits/use) (37)

information bits are étatistically independent andg each is equally

likely to be 0 or lﬂ] Notice that, although our information

symbols are binary, the encoded symbols are digits in the channel

input alphabet. The N, encoded digits formed each time unit

depend only on the current ko information bits and on the koT

information bits in the T most recent time units, but the

. By way of

convention, we assume that the "past" information bits are all

Zeroes when encoding begins,

General 2
>4 synchronous >
. logic with

binary channel

> input

infqrmation ¢ ? input memory,

sequence

of T time

units,possibly
time-varying.

sequence

Q oo

pParallel to Series

Series to Parallel
y

Fig. 10 A general (no,ko) trellis encoder with memory T

and rate Rt = ko/no.

It makes the notation much simpler if we write

u; = Wy 417 Ya-nk +27 00 Uy (38)
O O O
and].
—i=:[x(i-l)n +1 X(i-l)n 427! xin (39)
(o] o O

for the. "byte" of kO information bifs that enter the encoder and

the "byte" .of ng channel input symbols that leave the encoder,

respectively, at time unit i, i=1,2,3,... . Then Fig. 10

corresponds to the functional relationship

Z('i = fi(gi’ I_J-. -l'--c, gi"’T) (40)

where, by way of convention,

u. = l0,0,...,0], j < 1. (41)

-

We will not in fact make much use of this functional description,

except t

o_observe that it shows clearly that
g = J
i [gi_ll g-_zl"'l gi_T] (42)
i a2 valid choice for the encoder state at time i, since (40)
can be written
(43)

= ((0]

&S: 8| 6D

G . OO b &5

resmme

5]

| v] =

7 |

==

kT

Notice from (38) and (42) that there are exactly 2 N distinct

values for the state oi, one of which is the all-zero state.

We now define the (Lt, T, n_s ko) trellis code, determined

by a particular (no, ko) trellis encoder with memory T, to be the

block code whose list of codewords consists of the

kK L n R L
M=20 t =, O tTt (44)
output sequences of length
N = (L + T)n_ . (45)
from that encoder, corresponding to the M distinct choices
of Uy, Uyse.n Uy L, followed by the "tail® UL 1= th+T—[o 0,...,0.

which drives the encoder back to the all- zero state. Because the

rate R of a block code is defined by M = ZNR, we see from (44)

and (45) that

L
R = £

I+ Rt (46)
t

so that Lt >> T implies R a¢ Rt.

Notice that the initial and final states, Gl and oLt+T+l'
are both the all-zero state. If we now made a diagram (of which

that in Fig. 5 with the digits deleted from the branches, would

be a special case) showing at each time instant i, lsisLt+T+l,

the possible values of Gi and then showing the possible successors

of each state by branches from that state, we would obtain a

directed graph with M distinct paths from the root node cl

L +T+1° This graph is what we mean by a (k ,Lt,T)

to
the toor node o
t

trellis. The only property of this trellis that we have any real

use for is the following.

Lemma 5: Regardless of which path from the root to the toor node
is designated as the correct path in a (ko, Lt' T) trellis, there
are the same number b (j,%) of detours that begin at node j and

end at node j+%. Moreover, b(j,2) =0 for 2 & T and

k, k (2-T-1)
b(j,) < (2 °-1)2 ° , all & > T. (47)

Proof: Inequality (47) follows from the facts that (i) there

k
are 2 °-1 choices for gj different from its value on the correct
path as is needed to begin a detour; (ii) all the considered

detours must merge to the same state 0j+2 as on the correct path

and this, because of (42), determines [gj+2_l,gj+2_2,...,gj+£_T]

for all these detours; and (iii) there are 2k°(£-T-l) choices

for the intermediate information branches gj+l,gj+2,...,gj+2_T_l

but not all of these choices will correspond to a detour ending
at node j+& because some choices may:cause the detour to merge
to the correct path before - this node. Notice that (i) and (ii)
cannot simultaneously be satisfied.unless j+%-T>j, which shows

that b(j,%) = O if 2<T.

When we specify the encoding function fi of (43), we are
merely specifying the particular ng channel input digits that
should be placed on the branches leading from the states in the

trellis at depth i-1 from the root node:

the trellis from root to toor will be labelled with the M codewords

in this particular trellis code. Thus, instead of defining an

ensemble of trellis codes by the choice of these functions fi for

lGiSLt+Tu we can equivalently define this ensemble by the choice
of the By digits that we put on each branch of the (ko,Lt,T)

treliis.

Consider then an ensemble of (Lt,T,no,ko) trellis codes with

i.e., specifying how the paths in

=

= ==

= =D = on o

—

&

aE

T -

= | | L |

Probabilities assigned to each code such that for some given

probability distribution Q(x) over the channel input alphabet

the following two properties hold:

(1) Along any given path from the root to the toor node in

the trellis, the corresponding codeword X appears with the same

probability as if its digits were selected independently according

to Q(x), i.e.,

Qﬁ(xl,xz,...,xN) = .

[=1

Q(xn) (48)
1

where N of course is given by (45).

(2) The ensemble is pairwise independent in the sense that,

given any choice of the correct Path and any choice of a detour

starting at node j and ending at node j+2 (where 2>T), the encoded

Séquence along the detour and that along the corresponding segment
of the correct path appear jointly with the same probability as

if each of their digits was selected independently according to
Q(x).

We note that a conceptually simple way to satisfy both con-
ditions (1) and (2) is to make all the digits on all of the
branches in the trellis appear over the ensemble of codes’ as

if they were selected independently according to Q(x), i.e., to

assign to every possible (L /T, n, ,k) trellis code [}or the given

channel input alphabet] a probability equal to the product of

Q(x) taken over every digit x on every branch of the trellis.

We shall see later, however, that these conditions can also be

satisfied by the appropriate assignment of Probabilities to the

much smaller ensemble of linear trellis codes. This is of

Practical importance since it shows that the linear codes, which

are the easiest codes to implement, will achieve any upper bound

on error probability that we can prove for the more general en-

semble. &)

‘We now get down to the real task at hand, namely proving
an upper bound on the average bit error probability, E[Pb], for
the above ensemble of trellis codes. But first we should explain L)

why we are going after E[Pb] rather than the average block error

-

probability E[PB]. After all, trellis codes, are block codes, at

least when Lt < », And didn't we promise in Section 4E to prove

upper bounds for PB rather than Pb? That promise should and will

B

now be broken because we want a bound that will apply as Lt SRS

Except for trivial noiseless channels, we must face the fact that
PB + 1 as Lt + o for any given (no,ko) encoder with memory T,
i.e., if we force our coding system to work. forever, then it must

ultimately make some decoding error! Thus, the best upper bound

RS —_

we could possibly prove on'E[fB] that would. hold for Lt = o would
be the trivial upper bound 1. When we wish to consider Lt = o ,

only P_ has practical significance:

b

Tt should be obvious to the reader that ML decoding on a DMC

for an (L /T, ng ,k) trellis code can be implemented by a Viterbi
decoder with 2k°T states. We now proceed to overbound E[Pb] for El
such ML decoding on a DMC when the expectation is over the .ensemble

of codes satisfying conditions (1) and (2) above..

Let Ejz be the event that the ML decoder chooses a detour
from the correct path beginning at node j and ending at node j+2,
¢>T. This cannot happen unless one of the b(j,%) such detours)
would be chosen by a ML decoder in preference to the corresponding &

segment of the correct path and this in turn, because of conditions

(1) and (2) on our ensemble, can be overbounded by Gallagexr's random

I

L

D oD an &

o @S G W

)

coding bound (5.91) on E[PB] for the ensemble of block code

With M = b(j,2) + 1 codewords of length lno [the number of

encoded digits along the detour]. Thus, independently of the

choice of the information sequence,

A ~In E_(p,0)
BleE; 0] ¢ [b3,a)° 2 oo ;0 € P 1. (49)

The use of the bound (47) of lemma 5 in (49) gives

k Pk (4=T~1) -2n E (p,Q)
E[P(Ejz)] § (2 91)P 5 0 2 ©°0°

. (50)

If we now define the constraint length, Nt

+ Of the trellis

code as the maximum number of encoded digits that could be

affected by a single information bit as it passes through the

encoder, i.e., as

(51)

We can then rewrite (SO) as

k Tn & (0,0)-pk Jeer-1y -y g (0,0Q)
E[P(Ejz)] € (2 %-1)P 5,070 ° 2 to

' ky ok

for 0 € 0 < l. But (2 o-l) <209 SO we can weaken this last
inequality to

kg o [E (0,0)-pR] (2o1-1) E_(p,Q)
E[P(Ejz)]<2°200 t 2 to , 0<p g1 (5

which holds for all & > o,

Now defining Wj as in the Previous section, i

< ko(l-T), if the event Ejz OCcurs for some £>T

(53)
= 0, otherwise,

W,
J

where the inequality arises from the fact that, when Ejg occurs,

then -the only information pit errors that are possible along

the detour are those 1n gj, gj+l""' gj+l+T—l as follows from

property (ii) in the proof of lemma 5. Next, we note that because

of (53) the theorem on total expectation gives for any one code

L, +T+1-]

* *
E [wj] —1-;T+l E [Wj‘Ejll P(Ejy)

where the asterisk indicates that this expectation is over

channel behavior for a given information sequence and a given

code, the same as used to determine P(Ejl)' Moreover, the

inequality in (53) gives further

Lt+T+1-j
. :
g w.]ls > k_(2=T) P(E..),
J g=t+1 ° I3t

which we now further average over the ensemble of trellis codes

to get
Lt+T+l-j
E[Wj]s Z. k, (2=T) E[P(E.l)j. (54)
g=T+1 J

Using (52) in (54) and changing the index of summation to

i = & - T now gives
+1 -7
Lt 1-j

— i-1
i k -N.E (p,Q ° -n_[E_(p,Q)-pR]
elw,] < Kk 2 °©p tP©° 2 1{2 °-° } . (55)

i=0

Further weakening inequality (55) by extending the summation to

ct that differentiation of the geometric

i = », then using the fa

gseries
L la] < 1 (56a)

pwwerm weews, ST

5

/| A 5 4 0 - o G G &

J

e |

gives

= ?I:;;y ‘ (56b)

we find that

-NtEO(p’Q)
E[wj] < ky, (R ,0,Q) ; (57)
provided that
EO(D,Q)
R, < —— (58)

SO that the magnitude of the bracketed exXpression in (55) is

less than 1, where we have defined the coefficient function

2k°

c(R,_, Q) = ’ (59)
g’ P {l] Z-no[Eo(p,Q)~pRt]}2

which, while complicated,

on the constraint length Nt of the trellis code. Notice that our

upper bound (57) has no deperidence on Lt == which is why we

extended the Summation in (55) to infinity! Notice further that

it also has no dependence on Jj. But we now recall (26) which

implies that

L
(2] : Zt E[w.]
E = e
b ko Lt j=1 Jj

(60)

Using (57) in (60) gives finally our desired bound.

Viterbi's Random Coding Bound for Trellis Codes:

Over any en-
semble of (Lt,T,no

alphabet, then, regardless of the actual probability distribution

for the information bits, the average over these codes of the

bit error probability for ML decoding satisfies

-N EO(D,Q)

E[Pb] < c(R,0,Q) 2 , 0< P €1 (61)
provided that Rt = ko/nO satisfies
EO(D,Q)

where.c(Rt,D,Q) and Nt are defined by (59) and (51), respectively,

and where EO(D,Q) is Gallager's function (5.90).

Naturally, we are interested in the best exponent that we

can get in (57) for a given trellis code rate Rt' Because

EO(D,Q) increases with p, we want to choose p as large as

possible consistent with (62). The problem, however, is that the

inequality (62) is strict so that we cannot take p to satisfy

R, = Eo(p,Q)/p as we would 1ike. To avoid this problem, we pick

a small positive number € and replace (62) Wy the stronger con=

dition
EO(DIQ) - €
£ 5 . (63)

R

One happy consequence of (63) is that it simplifies (59) to

k -€n_ 2
c(r 0,0 €2 °/012 °) (64)

in which the upper bound has no dependence on p OrU Q. Because

R is the maximm of Eo(p,Q) over Q and p (0 & p £ 1), we see that

0

+he best. exponent in (61) equals RO over the range where (63)

can be satisfied, i.e., oOver R€$ RO - €. Denoting this best trellis

code error exponent by Et(R,éd, we have then

G e O &

et

E

Big=—d

Bl

=

E' = i

-

L

- EaE oG EmE

- 5 D

a

<l

| =

Et(Rt,e) = RO for Rt N RO - € (65a)
For higher rates, we can specify Et(R,G) Parametrically by
E (R, €) = mgx E_ (07 Q), Ry "€E<R_ s C-€ (65b)
where p*, which depends on Q, is the solution of
Eo(pf Q) -¢€
o =R, (66)

and where

E (p)
C = 1lim -2
P*0

~is the capacity of the DMC [see problem 5.l4]. Thus, we have

already proved most of the folLowing result,

Viterbi's Coding Theorem for Trelilis Codes.

For any positive number &, any assignment of Probabilities to
the information bits, any trellis code rate Rt = ko/no, any trellis

code constraint length Nt = (T+l)no, and any trellis length Lt

(including Lt = ®), there exist such trellis codes for use on a

DMC such that their bit error Probability for ML decoding satisfies

-N_E (R ,€)
tTE e (67)
where Et(Rt,€), which is given by (65) and (66), is positive

for Rt § C - € (where C is the capacity of the DMC) and where

k -€n
cv(s) = 2 0/(1_2 0)2 .

The only unproved part of this theorem is the claim that
Et(Rt,é) > O for RosgC-¢g,

which we leave as an exercise
(Problem 6.9).

Since we may choose € in the above theorem as small as we

like, we see that the "true" best exponent that can be achieved

at rate Rt is

Eg (R = éig Et(Rt,e), (69)

which we shall call the Viterbi exponent. Equivalently to (69),

we can define the Viterbi exponent by

EV(Rt) = RO’ for Rt < RO (70a)
and
*
EV(Rt) = mgx Eo(p Q) for RO < Rt < C (70b)
*
where p , which depends on Q, is the solution of
(71)

* *_
EO(D Q) /0 = Rt'
In Fig. 11, we give a sketch of the general form of the

Viterbi exponent EV(Rt), together with the Gallager exponent

EG(R) for block codes.[See Problem 6.10 for verification of the

genexal form of EV(R).] The striking feature is that
EV(Rt) > EG(R), for O g R = R < C. (72)

where the inequality is great at high rates. This indicates

that the constraint length Nt required with a good trellis code

to get some desired ML decoding error probability Pb will be

much,smaller than the blocklength N of a good block code of the

same :rake. This suggests a natural superiority of the "non-block"

trellis codes over block codes, but only if the complexity.of ML

decoding is comparable when Nt = N and Rt = R so that our com-

parison of error exponents is a fair one. But ML decoding of the

trellis code requires a Viterbi decoder with

DI sy S g S

oo

e W) OO G &3

==

=

)

~

L Ty NP

=

- D e O O

R,Rt
Rc Ro C
Fig. 11: The general form of the Viterbi exponent EV(Rt) and
the Gallager exponent EG(Rt).
kT nORtT N R
29 = 2 = 2 states. For a general block code, there
sSeems no better way to do MLJdecodlng than to compute P(xlx)

for all m = pNR codewords x, then choose that X which gave

the largest. But these two ways of performing M1 decoding are

indeed of roughly the same complexity so that the comparison

made above isg fair.

to decode than by the general method described above? Indeed there

are! Remember that an (Lt,T,nO,ko) trellis code is also a block

code (unless Lt = ») with N

Y a decoder whose complexity
N. R (T+1)n R
is of the order 2 tt = 2 ° t<<2NR. The trellis codes them-

selves are the subclass of block codes for which ML dec

oding is
apparently simplest!

6.45

There is a simple geometric method to find the function

EV(Rt) from EG(R), or vice versa Lsee Problem 6.9].

This is also the appropriate place to mention that the E

credence to the

form of EV(R) as in Fig. 11 gives even greater

R

claim that RO is the best single parameter description of a DMC.

Not only.does RO specify a range of rates where EV(Rt) is I

positive, namely Rt < RO, put it also shows that we can achieve

an error exponent equal to RO everywhere in this rate region, ﬂ

if we have the good sense to opt for trellis codes rather than

block codes.

[
[
)
E

= |

