

Guide for measurements of

Mobile Communications and Quantum

Technologies Laboratory

Arduino/Moteino development

Place of measurement:

Department of Networked Systems and Services,

Mobile Communications and Quantum Technologies Laboratory (MCL)

I.B.113.

Made by:

Ádám Knapp

Last modification:

10. February 2017

1 Introduction

The students will learn about the concept of Internet of Things (IoT) and meet the Moteino

sensor node during the measurement. It is an Arduino compatible node enabling us to build

simple sensor networks. The students will learn how to program the devices, read sensor data

and communicate via the radio interface of the nodes.

The Internet of Thing concept became one of the biggest buzzword in the ICT sector. It connects

to such themes, like Smart Home, Smart City, Machine to Machine (M2M) communication,

and of course to the mobile, wireless and sensor networks. The idea of IoT is to connect

everything in a huge network. Such “thing” can be almost anything, wearable devices,

household appliances, metering devices, vehicles etc. This is possible due to the different wired

and wireless communication technologies. However, the IPv6 network protocol have to be

highlighted, because it has advanced abilities to handle such big network e.g. its very large

address domain, different discovery and security features. Therefore the IPv6 can behave as a

common platform for IoT devices.

The motivation behind the IoT is making our life much easier, comfortable and much safer by

automating numerous activities. This process usually starts with monitoring our environment

using different sensors. Then, the generated data is aggregated, processed or sent depending on

the actual implementation of the system. Finally, these information are used by the system to

intervene automatically and also to provide manual control. The data processing can be done

locally or remotely e.g. on a server or in cloud, and the control can be from locally or from

remotely, too.

2 Preparing for the measurements

 Read this document! It contains the most important information about the measurement.

 Refresh your C programming skills! The Arduino programming reference is available

in [1]!

 Think about the questions (7 Questions)!

3 Measurement layout

The students perform the tasks independently. The devices for the measurement is the

followings:

 a PC with Arduino IDE,

 a Moteino sensor node [2],

 a USB-UART converter.

3.1 Moteino sensor node – RFM69 RF chip

The Moteino node is a low-price, low-power, open-source Arduino compatible platform. Its

panel has an ATmega328 microprocessor as its “brain”, an RFM69 RF chip and many pins to

connect different sensors and other peripheral units. The microcontroller communicates with

the PC via serial port, but it needs a UART-USB serial converter for proper connection. The

converter also provides the 5V power for the node. The serial interface is used for uploading

the code and for sending messages e.g. for debugging. Figure 1 shows the Moteino sensor node

from below and above. Figure 2 illustrates the implemented packet structures by the RFM69

library. More information can be found about the node in [2], about the RFM69 RF chip in [3]

and [4].

Figure 1. Moteino sensor node [2]

Figure 2. RFM69 packet structure [4]

3.2 Arduino IDE

The Arduino IDE is an open-source development environment made for programming Arduino

compatible devices. It has two main functions: it supports coding on a C-like Arduino specific

language and it is able to compile the source code and upload that on the device.

Before the code is compiled, check the following settings (once enough after running the IDE):

 Tools/Board - Arduino Uno have to be selected,

 Tools/Port - select COMX, which represents the connected UART-USB converter,

 Tools/Programmer - AVRISP mkII have to be selected.

Follow these instructions for uploading the code (Figure 3):

1. Verify the source code with Arduino IDE! Click on the Verify icon or use Ctrl+R!

2. Correct both errors and warnings too! If the compiling was successful, upload the code

using the Upload icon or Crtl+U!

Figure 3. Arduino IDE

Finally, one other function of Arduino IDE have to be highlighted. The Serial Monitor provides

connection via the serial interface. It can send messages and display the received ones to/from

the Moteino sensor node. It can be started in a separate window by clicking Tools/Serial

Monitor in the menu or using Crtl+Shift+M. Pay attention to select the proper baudrate from

the select list in the right bottom corner (Figure 4)!

Figure 4. Serial Monitor

4 Programming Arduino devices

Arduino devices work as embedded systems, therefore they have some specialties, which have

to be taken into account. One of them is the limited computational and memory capacity.

However, nowadays compilers are able to handle higher programming languages, than the

machine code. Hence, we can write source code in C-like language developed for Arduino [1].

Nevertheless, we have to pay attention to use only the necessary number of variables and

compress the source code. The most important libraries and functions are presented in the

followings, which are used during the measurement. More information can be found about the

Arduino specific C language in [1] and about the FRM69 library in [4].

4.1 Structure of Arduino applications

The Arduino source code can be separated logically into three main parts. The first section

contains instructions for the preprocessor. This section is optional, but we have to usually load

libraries and APIs for the given, specific device (in our case we load the RFM69 library). The

second part contains the initialization instructions. These are executed after powering up the

device, and they have to bring the device in a well-defined state. The initialization must be

written in void setup() procedure. Finally, the third section contains the periodically executed

instructions (since the embedded systems execute the same program continuously and

endlessly). These instructions must be written in void loop() procedure. Both the

initialization and the loop code parts are mandatory. Naturally, we can write other functions,

procedures, libraries etc. for easier code reading and for code re-usage like in traditional C

language.

4.2 Instructions for preprocessor

Two general and very often used instructions belongs here:

#include <file> Loads libraries and APIs
#define constantName value Defines constant

4.3 Communication

Moteino nodes have two interfaces for communication. They are equipped RFM69 RF chips

for wireless communication, and USB-UART serial converter is used for serial communication

with PC. The serial interface is used for programming the device, debugging the code, to issue

instructions and to display data. The following table contains the most important functions for

serial communication:

byte Serial.available() Gets the number of bytes, which are ready to read from

the serial interface
void Serial.begin(baudrate) Initializes the serial interface with given baudrate
byte

Serial.print(val,format)
Prints text or a variable via the serial interface

byte

Serial.println(val,format)
Same as above, just prints a carriage return character

and a newline character
byte Serial.read() Reads the first byte of incoming serial data
long Serial.parseInt() Looks for the next valid integer in the incoming serial

stream

The radio interface is used for communicating between Moteino nodes. The following table

contains the most important functions for RF communication:

RFM69 radio; Instantiation of an RFM69 type radio object
bool radio.initialize(

byte freqBand, byte ID,

byte networkID=1);

Initializes radio; parameters: frequency band, ID of

node, ID of network

void radio.send(

byte toAddress,

const void* buffer,

byte bufferSize,

bool requestACK=false);

Sends a packet/message; parameters: destination

ID, data, data size, request for acknowledgement

(ACK)

bool radio.sendWithRetry(

byte toAddress,

const void* buffer,

byte bufferSize, byte

retries=2,

byte retryWaitTime=15);

Sends packet/message with retry; parameters:

destination ID, data, data size, max. number of

retries, time interval between retries

bool radio.ACKReceived(

byte fromNodeID);
Checks that ACK is received or not; parameter:

source node ID
void radio.promiscuous(

bool onOff=true);
Receives and processes every packets independently

who is the destination; parameter: turn on/off
bool radio.receiveDone(); Checks that the packet from the radio interface is

received completely
byte radio.SENDERID; Data member of sender ID
byte radio.DATALEN; Data member of the received packet length (≤ 61)
byte radio.DATA[DATALEN]; Data member of the received packet

4.4 Handling LED and sensors

There are a LED and a temperature sensor available on Moteino nodes. In addition, the RF chip

provides Received Signal Strength Indicator (RSSI) data as the descriptor of the radio channel

quality. The LED can be operated by the following instructions (the PIN number of the LED is

9):

void delay(unsigned long ms) Delay; parameter: milliseconds
void digitalWrite(byte pin,

value)
Set PIN in high or low power state; parameters: PIN

number, value: HIGH/LOW
void pinMode(byte pin, mode) Configure PIN as input/output; parameters: PIN

number, mode: INPUT/OUTPUT/INPUT_PULLUP

The temperature sensor can be accessible by the following function:

byte readTemperature(byte

calFactor=0);
Reading temperature; parameter: correction factor

The RSSI data can be read from the RF chip by the next function:

int readRSSI(bool

forceTrigger=false);
Reading RSSI; parameter: force immediate reading

5 Protocol specification

One goal of the measurement is to implement a simple protocol, which is capable of transferring

commands and sensor data in the network of Moteino nodes. Three different logical entities are

distinguished in that sensor network (each node is configured manually):

 Slave: it reads its sensors and sends the measurement data periodically (~1-2 seconds).

It also responds to the received commands.

 Aggregator: it has similar operation, than the slave, but it also aggregates sensor data

from connected slaves and sends them to the master. It also forwards commands from

the master to the proper slave.

 Master: it has similar operation, than the aggregator, but it displays the received and

locally generated sensor data. It processes commands from the PC and sends them to

the proper nodes.

The packet format of the protocol is the following:

Header

1 byte

Destination

address

1 byte

Data

1. byte

Data

2. byte

Data

3. byte

Data

4. byte

Figure 5. Packet structure of the simple sensor network protocol

This packet is transmitted in the data field of the RFM69 packet (Figure 2). This packet is fixed

6 bytes long, therefore no length field is necessary (but the RFM69 packet contains such field

in its header anyway). Two types of data is allowed in the data field: temperature and RSSI.

The value of the header field influences the node operation as follows:

Header byte value Description

1 Data field contains temperature value

2 Data field contains RSSI value

10 LED is turned on (data field set to 0)

11 LED is turned off (data field set to 0)

12 LED is blinking (data field set to 0)

20 Turn on temperature sensor (its value is read periodically)

21 Turn off temperature sensor (its value is not read)

22 Turn on RSSI sensor (its value is read periodically)

23 Turn off RSSI sensor (its value is not read)

6 Measurement tasks

Task 1.

Introduction of using Moteino sensor node: connecting to PC, coding and uploading the first

application.

Task 2.

Communicating with PC using the serial port: getting and displaying data, getting commands.

Task 3.

Usage of LED and sensors of Moteino node: turning on/off and blinking the LED, reading

temperature and RSSI data from sensors.

Task 4.

a) Sending message via the radio interface: RF initialization, sending and receiving

packets.

b) Implementing the simple sensor network protocol: implementing the packet structure,

sending and receiving packets wireless, assembling and processing packets.

Task 5.

Establishing a sensor network and testing the implemented functions.

7 Questions

 What kind of modulation (type, number of states, other attributes) do the RFM69 radio

use? (It can be found in the RFM69 chip specification.)

 What kind of transmitter frequency bands are supported by the RFM69 radio? (It can be

found in the RFM69 chip specification.)

 Define a structure on C programming language, which contains 1 byte header and 7 byte

data field!

 Which functions can be used for getting the RSSI and temperature values?

 Which functions are necessary to be implemented for Arduino based embedded system?

References

[1] Arduino Language Reference,

https://www.arduino.cc/en/Reference/HomePage

[2] All about Moteino,

http://lowpowerlab.com/moteino/

[3] RFM69 ISM TRANSCEIVER MODULE V1.3,

http://mcl.hu/?q=hu/laboratory/usrp

[4] RFM69 library,

http://lowpowerlab.com/blog/2013/06/20/rfm69-library/

https://www.arduino.cc/en/Reference/HomePage
http://lowpowerlab.com/moteino/
http://mcl.hu/?q=hu/laboratory/usrp
http://lowpowerlab.com/blog/2013/06/20/rfm69-library/

